EFOMP Workshop, ECR, March 1, 2023

Technical Possibilities of Photon-Counting CT

Marc Kachelrieß

German Cancer Research Center (DKFZ) Heidelberg, Germany www.dkfz.de/ct

Requirements for CT: up to 10⁹ x-ray photon counts per second per mm². Hence, photon counting only achievable for direct converters.

Energy-Selective Detectors: Improved Spectroscopy, Reduced Dose?

Ideally, bin spectra do not overlap, ...

Energy-Selective Detectors: Improved Spectroscopy, Reduced Dose?

... realistically, however, they do!

Photon Counting CT Availability

	Sensor material	Detector pixel size at iso	Pixel binning	FOM	Bins	FDA	Pubs	Installations
Canon	CdZnTe	210 µm	3x3, 1x1	50 cm	5	no	1	1 prototype (Japan)
GE	Si, edge on	400 × 400 µm	?	?	?	no		2 experimental setups (Sweden, USA)
Philips	CdZnTe	274 × 274 µm	?	50 cm	5	no	≈22	1 experimental setup (France)
Siemens CounT	GOS/CdTe dual source	700 × 600 μm / 250 × 250 μm	2×2, 1×1	50 / 28 cm	4	no	≈50	3 experimental systems (Germany, USA)
Siemens CountPlus	CdTe	150 × 176 µm	2×2, 1×1	50 cm	4	no	≈11	3 prototypes (Czech, Sweden, USA)
Siemens Alpha	CdTe/CdTe dual source	2 · 150 × 176 μm	2×2, 1×1	50 / 36 cm	4	yes	≈40	about 100 worldwide

Face on design (all others)

Image courtesy of Siemens Healthineers

The additional factor 2 in the detector pixel size column indicates that some scan modes may use binning.

Siemens Naeotom Alpha The World's First Photon-Counting CT is a Dual Source PCCT

Alpha PCCT at University Medical Center Mannheim (UMM), Heidelberg University, Germany

Detector Pixel Force vs. Alpha

Focus sizes (Vectron): 0.181×0.226 mm, 0.271×0.7316 mm, 0.362×0.497 mm at iso which are 0.4×0.5 mm, 0.6×0.7 mm, 0.8×1.1 mm at focal spot

ASG information taken from [J. Ferda et al. Computed tomography with a full FOV photon-counting detector in a clinical setting, the first experience. European Journal of Radiology 137:109614, 2021]

Evolution of Spatial Resolution

similar to Energy-integrating CT (B70)

Pixel size 0.181 mm Slice thickness 0.60 mm Slice increment 0.30 mm MTF_{50%} = 8.0 lp/cm MTF_{10%} = 9.2 lp/cm Pixel size 0.181 mm Slice thickness 0.20 mm Slice increment 0.10 mm MTF_{50%} = 39.0 lp/cm MTF_{10%} = 42.9 lp/cm

All measurements at Naeotom Alpha, Siemens Healthineers. QIR Reconstructions such that the maximum spatial resolution of Flash, CounT and Alpha is demonstrated on the same sample. *C* = 1200 HU, *W* = 4000 HU

scanned at PCCT (Naeotom Alpha, Br98u)

Advantages of Photon Counting CT

- No reflective gaps between detector pixels
 - Higher geometrical efficiency
 - Less dose
- No electronic noise
 - Less dose for infants
 - Less noise for obese patients
- Counting
 - Swank factor = 1 = maximal
 - "lodine effect" due to higher weights on low energies
- Energy bin weighting
 - Lower dose/noise
 - Improved iodine CNR
- Smaller pixels (to avoid pileup)
 - Higher spatial resolution
 - "Small pixel effect" i.e. lower dose/noise at conventional resolution
- Spectral information on demand
 - Dual Energy CT (DECT)
 - Multi Energy CT (MECT)

No Electronic Noise!

- Photon counting detectors have no electronic noise.
- Extreme low dose situations will benefit
 - Pediadric scans at even lower dose
 - Obese patients with less noise
 - EI (Dexela)

Readout noise only. Single events hidden!

No readout noise. Single events visible!

18 frames, 5 min integration time per frame, x-ray off

Energy Integrating (Detected Spectra at 100 kV and 140 kV)

0 keV 100 keV 140 keV 33 keV lodine k-edge $\text{Signal}_{\text{EI}} = \int dE \, E \, N(E)$

100 kV and 140 kV EI spectra as seen after having passed 32 cm of water.

Photon Counting (Detected Spectra at 100 kV and 140 kV)

100 kV and 140 kV PC spectra (one bin) as seen after having passed 32 cm of water.

Iodine CNRD Assessment Regions of Interest

C = 180 HU, W = 600 HU

PC with 1 Bin vs. El Potential Dose Reduction

PC with 2 Bins vs. El Potential Dose Reduction

Ultra-High Spatial Resolution on Demand!

- Small electrodes are necessary to avoid pile-up.
- High bias voltages (around 300 V) limit charge diffusion and thus blurring in the non-structured semiconductor layer.
- Thus, higher spatial resolution is achievable.

Kachelrieß, Kalender. Med. Phys. 32(5):1321-1334, May 2005

Small Pixel Effect at Naeotom Alpha

Medium Phantom, 4 mGy CTDI₃₂

To disable the longitudinal small pixel effect, we reconstructed rather thick slices (1 mm thickness).

25% dose reduction

± 89 HU

o dose reduct

UHR B70f

± 62 HU

 $\langle \rangle$

10 mm

Macro/Std B70f

± 77 HU

UHR U80f

± 158 HU

All images taken at the same dose at Somatom CounT. C = 1000 HU, W = 3500 HU L. Klein, C. Amato, S. Heinze, M. Uhrig, H.-P. Schlemmer, M. Kachelrieß, and S. Sawall. Effects of Detector Sampling on Noise Reduction in a Clinical Photon Counting Whole-Body CT. Investigative Radiology, vol. 55(2):111-119, February 2020.

Energy Integrating Detector (B70f)

Acquisition with EI:

- Tube voltage of 120 kV
- Tube current of 300 mAs
- Resulting dose of CTDI_{vol 32 cm} = 22.6 mGy

t 94 HU b 9

Photon Counting Detector (B70f)

Acquisition with UHR:

- Tube voltage of 120 kV
- Tube current of 180 mAs
- Resulting dose of CTDI_{vol 32 cm} = 14.6 mGy

C = 50 HU, W = 1500 HU

X-Ray Dose Reduction of B70f

	UHR vs. Std	80 kV	100 kV	120 kV	140 kV
DC VS	PC S	23% ± 12%	34% ± 10%	35% ± 11%	25% ± 10%
"small pixel e	effect one M	32% ± 10%	32% ± 8%	35% ± 8%	34% ± 9%
	L	35% ± 10%	29% ± 15%	27% ± 9%	31% ± 11%
	UHR vs. El	80 kV	100 kV	120 kV	140 kV
PC V ("small pi and "iodi	IS. EI S	33% ± 9%	52% ± 5%	57% ± 7%	57% ± 6%
	dine effect")	41% ± 8%	47% ± 7%	60% ± 6%	62% ± 4%
	L	48% ± 8%	43% ± 10%	54% ± 6%	63% ± 5%
	Noise	B70f		PC-UHR Mode 0.25 mm pixel size 0.50 mm pixel s	de El detector ize 0.60 mm pixel size
					Resolution

Klein, Kachelrieß, Sawall et al. Invest. Radiol. 55(2), Feb 2020

dkfz.

Drawbacks of UHR?

Power of Vectron X-Ray tube in Naeotom Alpha

What About the Spectral Performance of PCCT?

Results – Different DECT Techniques

TVS 80 kV / 140 kV

DS 100 kV / Sn 140 kV

VNC

odine

Faby and Kachelrieß, MedPhys 42(7):4349-4366, July 2015.

Water: C = 0 HU / W = 400 HU lodine: C = 0 mg/mL / W = 6 mg/mL

Results – PC (Realistic PC Model)

Faby and Kachelrieß, MedPhys 42(7):4349-4366, July 2015.

Water: C = 0 HU / W = 400 HU lodine: C = 0 mg/mL / W = 6 mg/mL

Results – PC/PC (Realistic PC Model)

PC 100 kV / PC Sn 140 kV

DS PC 2 bins

DS PC 1 bin

DS 100 kV / Sn 140 kV

VNC

odine

Faby and Kachelrieß, MedPhys 42(7):4349-4366, July 2015.

Water: C = 0 HU / W = 400 HU lodine: C = 0 mg/mL / W = 6 mg/mL

DS PC 4 bins

80 kV / 140 kV

Conclusions

- PCCT offers several advantages: low dose, high spatial resolution, spectral information on demand.
- Thereby, it outperforms all EI CT systems by far.
- PCCT further outperforms all DECT implementations other than dual source CT (DSCT).
 - Fast tube voltage switching, sandwich detectors, or split filter DECT implementations are inferior compared with PCCT.
 - DSCT, cannot be outperformed by single source PCCT. The reason is that DSCT marginalizes the spectral overlap by using a selective prefilter on the high kV tube.
 - To outperform DSCT in terms of spectral performance it is necessary to have a DS-PCCT system with a prefilter on the high kV tube.

Thank You!

This presentation will soon be available at www.dkfz.de/ct.

Job opportunities through DKFZ's international Fellowship programs (marc.kachelriess@dkfz.de).

Parts of the reconstruction software were provided by RayConStruct[®] GmbH, Nürnberg, Germany.

