ECMP Symposium 2022, Dublin, Ireland

Photon Counting CT

Marc Kachelrieß

German Cancer Research Center (DKFZ) Heidelberg, Germany www.dkfz.de/ct

Diagnostic PCCT Systems (as of August 2022)

	Detector material	Detector pixel size at iso	Field of Measurement	Bins	Approved product?	Publications (scopus search)
Canon	CdZnTe		50 cm	5	no	
GE	Si (edge on)				no	
Philips	CdZnTe	275 × 275 μm	50 cm	5	no	≈22
Siemens CounT	dual source GOS/CdTe	2- 250 × 250 µm	50 / 27.5 cm	4	no	≈50
Siemens CounT+	CdTe	2- 150 × 176 µm	50 cm	4	no	≈11 ≻ > 10
Siemens Naeotom Alpha	dual source CdTe	2· 150 × 176 µm	50 / 36 cm	4	yes ≈40 installed	≈40

Face on design (all others)

Image courtesy of Siemens Healthineers

The additional factor 2 in the detector pixel size column indicates that some scan modes may use binning.

Requirements for CT: up to 10⁹ x-ray photon counts per second per mm². Hence, photon counting only achievable for direct converters.

dkfz.

Energy-Selective Detectors: Improved Spectroscopy, Reduced Dose?

Ideally, bin spectra do not overlap, ...

Spectra as seen after having passed a 32 cm water layer.

Energy-Selective Detectors: Improved Spectroscopy, Reduced Dose?

... realistically, however, they do!

Spectra as seen after having passed a 32 cm water layer.

Photon Events

- Detection process in the sensor
- Photoelectric effect (e.g. 80 keV)

Photon Events

- Detection process in the sensor
- Compton scattering or K-fluorescence (e.g. 80 keV)

Photon Events

- Detection process in the sensor
- Photoelectric effect (e.g. 30 keV), charge sharing

Siemens CounT CT System

Gantry from a clinical dual source scanner A: conventional CT detector (50.0 cm FOV) B: Photon counting detector (27.5 cm FOV)

Readout Modes of the CounT

PC-UHR Mode 0.25 mm pixel size

PC-Macro Mode 0.50 mm pixel size **El detector** 0.60 mm pixel size

dkfz.

Readout Modes of the Siemens CounT

Chess Mode

 0.9×1.1 mm focus

4 readouts

16 mm z-coverage

<mark>34</mark>

12

<mark>34</mark>

12

Macro Mode				
0.9×1.1 mm focus				
2 readouts				
16 mm z-coverage				

12	12	12	12	12	34	12
12	12	12	12	34	12	34
12	12	12	12	12	34	12
12	12	12	12	34	12	34

1.6 mm CdTe sensor. No FFS on detector B (photon counting detector). 4×4 subpixels of 225 μ m size = 0.9 mm pixels (0.5 mm at isocenter). An additional 225 μ m gap (e.g. for anti scatter grid) yields a pixel pitch of 1.125 mm.The whole detector consists of 128×1920 subpixels = 32×480 macro pixels. Sharp Mode 0.9 × 1.1 mm focus 5 readouts 12 mm z-coverage

1

1

1

1

1

UHR Mode

This whole-body PCCT prototype, that had been installed at the Mayo Clinic, at the NIH and at the DKFZ, is a DSCT system. However, it is restricted to run in single source mode. The second source is used for data completion and for comparisons with El detectors.

Siemens Naeotom Alpha The World's First Photon-Counting CT

Alpha PCCT at University Medical Center Mannheim (UMM), Heidelberg University, Germany

Detector Pixel Force vs. Alpha

Focus sizes (Vectron): 0.181×0.226 mm, 0.271×0.7316 mm, 0.362×0.497 mm at iso which are 0.4×0.5 mm, 0.6×0.7 mm, 0.8×1.1 mm at focal spot

ASG information taken from [J. Ferda et al. Computed tomography with a full FOV photon-counting detector in a clinical setting, the first experience. European Journal of Radiology 137:109614, 2021]

Evolution of Spatial Resolution

similar to 2005: Somatom Flash (B70)

similar to 2014: Somatom CounT (U70) scanned at 2021: Naeotom Alpha (Br98u)

Pixel size 0.181 mm Slice thickness 0.60 mm Slice increment 0.30 mm $MTF_{50\%} = 8.0$ lp/cm $MTF_{10\%} = 9.2$ lp/cm Pixel size 0.181 mm Slice thickness 0.20 mm Slice increment 0.10 mm MTF_{50%} = 12.1 lp/cm MTF_{10%} = 16.0 lp/cm Pixel size 0.181 mm Slice thickness 0.20 mm Slice increment 0.10 mm $MTF_{50\%} = 39.0$ lp/cm $MTF_{10\%} = 42.9$ lp/cm

10 mm

Advantages of Photon Counting CT

- No reflective gaps between detector pixels
 - Higher geometrical efficiency
 - Less dose
- No electronic noise
 - Less dose for infants
 - Less noise for obese patients
- Counting
 - Swank factor = 1 = maximal
 - "lodine effect" due to higher weights on low energies
- Energy bin weighting
 - Lower dose/noise
 - Improved iodine CNR
- Smaller pixels (to avoid pileup)
 - Higher spatial resolution
 - "Small pixel effect" i.e. lower dose/noise at conventional resolution
- Spectral information on demand
 - Dual Energy CT (DECT)
 - Multi Energy CT (MECT)

No Electronic Noise!

- Photon counting detectors have no electronic noise.
- Extreme low dose situations will benefit
 - Pediadric scans at even lower dose
 - Obese patients with less noise
 - EI (Dexela)

Readout noise only. Single events hidden!

No readout noise. Single events visible!

18 frames, 5 min integration time per frame, x-ray off

Expected Value and Variance

- Transmitted number of photons N: $N(E) = N_0(E)e^{-p\psi(E)}$
- Poisson distribution: EN(E) = VarN(E)
- Detected signal S with sensitivity s(E):

$$S = \int dE \, s(E) N(E)$$

• Expected value and variance of the signal S:

 $ES = \int dE s(E) EN(E)$ and $VarS = \int dE s^2(E) EN(E)$

• Detector sensitivity: PC s(E) = 1, but El $s(E) \propto E$!

Energy Integrating (Detected Spectra at 100 kV and 140 kV)

0 keV 33 keV 100 keV 140 keV lodine k-edge $\text{Signal}_{\text{EI}} = \int dE \, E \, N(E)$

Spectra as seen after having passed a 32 cm water layer.

Photon Counting (Detected Spectra at 100 kV and 140 kV)

Spectra as seen after having passed a 32 cm water layer.

dkfz.

- The Swank factor measures the relative SNR², and thus the relative dose efficiency between photon counting (PC) and energy integrating (EI).
- PC always has the highest SNR.

Photon Counting used to Maximize CNR

- With PC, energy bin sinograms can be weighted individually, i.e. by a weighted summation
- To optimize the CNR the optimal bin weighting factor w_b is given by (weighting after log):

The resulting CNR is

$$\operatorname{CNR}^{2} = \frac{\left(\sum_{b} w_{b} C_{b}\right)^{2}}{\sum_{b} w_{b}^{2} V_{b}}$$

 $w_b \propto \frac{C_b}{V_b}$

• At the optimum this evaluates to

$$CNR^{2} = \sum_{b=1}^{B} CNR_{b}^{2}$$

The two ROIs are used to measure the CNR.

Energy Integrating vs. Photon Counting with 1 bin from 20 to 140 keV

Energy Integrating

PC minus **EI**

Photon Counting

Images: C = 0 HU, W = 700 HU, difference image: C = 0 HU, W = 350 HU, bins start at 20 keV

Energy Integrating vs. Photon Counting with 4 bins from 20 to 140 keV

Energy Integrating

PC minus **EI**

Photon Counting

Images: C = 0 HU, W = 700 HU, difference image: C = 0 HU, W = 350 HU, bins start at 20 keV

Iodine CNRD Assessment Reconstruction Examples @ 80 kV

C/W=0 HU/400HU

Iodine CNRD Assessment Regions of Interest

C/W=180 HU/600HU

PC with 1 Bin vs. El Potential Dose Reduction

PC with 2 Bins vs. El Potential Dose Reduction

Ultra-High Spatial Resolution on Demand!

- Small electrodes are necessary to avoid pile-up.
- High bias voltages (around 300 V) limit charge diffusion and thus blurring in the non-structured semiconductor layer.
- Thus, higher spatial resolution is achievable.

Dental Imaging SOMATOM CounT

DVT 8 mGy, 102 kV

PCCT 8.5 mGy, 120 kV PCCT 38 mGy, 120 kV

E: enamel, CEJ: cemento-enamel-junction, RC: root canal, CB: cortical bone, SB: spongious bone, PS: peridontal space

DVT: Veraview X800, Morita, Japan, PCCT: Somatom CounT, Siemens, Germany

Dose values are 16 cm CTDI values.

Slice positions between DVT and PCCT do not match exactly.

Evolution of Spatial Resolution

similar to 2005: Somatom Flash (B70)

similar to
2014: Somatom CounT (U70)

scanned at 2021: Naeotom Alpha (Br98u)

Pixel size 0.181 mm Slice thickness 0.60 mm Slice increment 0.30 mm $MTF_{50\%} = 8.0$ lp/cm $MTF_{10\%} = 9.2$ lp/cm Pixel size 0.181 mm Slice thickness 0.20 mm Slice increment 0.10 mm MTF_{50%} = 12.1 lp/cm MTF_{10%} = 16.0 lp/cm Pixel size 0.181 mm Slice thickness 0.20 mm Slice increment 0.10 mm $MTF_{50\%} = 39.0$ lp/cm $MTF_{10\%} = 42.9$ lp/cm

10 mm

Kachelrieß, Kalender. Med. Phys. 32(5):1321-1334, May 2005

To Bin or not to Bin? (the continuous view)

This nice phrase was coined by Norbert Pelc.

- We have PSF(x) = s(x) * a(x) and MTF(u) = S(u)A(u).
- From Rayleigh's theorem we find noise is

$$\sigma^2 = \int dx \, a^2(x) = \int du \, A^2(u) = \int du \, \frac{\mathrm{MTF}^2(u)}{S^2(u)}$$

• Compare Small (A) with L Avoid binning, if possible pixels:

• We have $S_{
m A}(u)>S_{
m B}(u)\,$ and thus $\sigma_{
m A}^2<\sigma_{
m B}^2.$

A:

B:

• This means that a desired PSF/MTF is often best achieved with smaller detectors.

Kachelrieß, Kalender. Med. Phys. 32(5):1321-1334, May 2005 Baek, Pineda, and Pelc. PMB 58:1433-1446, 2013

?]

• Noise propagation yields 20% more noise (variance) for the binned detector: $Var\hat{A} = \frac{6}{16}VarA = \frac{3}{8}VarA$

$$\operatorname{Var}\hat{B} = \frac{1}{2}\operatorname{Var}A = \frac{4}{3}\operatorname{Var}\hat{A} = 1.3\operatorname{Var}\hat{A}$$

Kachelrieß, Kalender. Med. Phys. 32(5):1321-1334, May 2005

All images reconstructed with 1024^2 matrix and 0.15 mm slice increment. C = 1000 HU W = 3500 HU

Data courtesy of the Institute of Forensic Medicine of the University of Heidelberg and of the Division of Radiology of the German Cancer Research Center (DKFZ)

PC-UHR, U80f, 0.25 mm slice thickness

± 214 HU

PC-UHR, U80f, 0.75 mm slice thickness

± 131 HU

PC-UHR, B80f, 0.75 mm slice thickness

± 53 HU

El, B80f, 0.75 mm slice thickness

± 75 HU

10% MTF: 19.1 lp/cm 10% MTF:17.2 lp/cm xy FWHM: 0.48 mm z FWHM: 0.40 mm CTDI_{vol}: 16.0 mGy

10% MTF: 19.1 lp/cm 10% MTF:17.2 lp/cm xy FWHM: 0.48 mm z FWHM: 0.67 mm CTDI_{vol}: 16.0 mGy

10% MTF: 9.3 lp/cm 10% MTF:10.5 lp/cm xy FWHM: 0.71 mm z FWHM: 0.67 mm CTDI_{vol}: 16.0 mGy

10% MTF: 9.3 lp/cm 10% MTF:10.5 lp/cm xy FWHM: 0.71 mm z FWHM: 0.67 mm CTDI_{vol}: 16.0 mGy

dkfz.

25% dose reduction

± 89 HU

o dose reduct

UHR B70f

± 62 HU

(

10 mm

Macro B70f

± 77 HU

UHR U80f

± 158 HU

All images taken at the same dose at Somatom CounT. C = 1000 HU, W = 3500 HU L. Klein, C. Amato, S. Heinze, M. Uhrig, H.-P. Schlemmer, M. Kachelrieß, and S. Sawall. Effects of Detector Sampling on Noise Reduction in a Clinical Photon Counting Whole-Body CT. Investigative Radiology, vol. 55(2):111-119, February 2020.

Energy Integrating Detector (B70f)

Acquisition with EI:

- Tube voltage of 120 kV
- Tube current of 300 mAs
- Resulting dose of CTDI_{vol 32 cm} = 22.6 mGy

t 94 HU C 9

Photon Counting Detector (B70f)

Acquisition with UHR:

- Tube voltage of 120 kV
- Tube current of 180 mAs
- Resulting dose of CTDI_{vol 32 cm} = 14.6 mGy

C = 50 HU, W = 1500 HU

X-Ray Dose Reduction of B70f

	UHR vs. Macro	80 kV	100 kV	120 kV	140 kV
DC VS	S. PC	23% ± 12%	34% ± 10%	35% ± 11%	25% ± 10%
"small pixe	l effect 0102	32% ± 10%	32% ± 8%	35% ± 8%	34% ± 9%
	L	35% ± 10%	29% ± 15%	27% ± 9%	31% ± 11%
	UHR vs. El	80 kV	100 kV	120 kV	140 kV
PC	vs. El S	33% ± 9%	52% ± 5%	57% ± 7%	57% ± 6%
("small and "ic	pixel effect") odine effect")	41% ± 8%	47% ± 7%	60% ± 6%	62% ± 4%
	L	48% ± 8%	43% ± 10%	54% ± 6%	63% ± 5%
	Noise	B70f		PC-UHR Mode 0.25 mm pixel size 0.50 mm pixel s	ode El detector 0.60 mm pixel size
					Resolution

Klein, Kachelrieß, Sawall et al. Invest. Radiol. 55(2), Feb 2020

dk1

Lateral Small Pixel Effect at Naeotom Alpha

To disable the longitudinal small pixel effect, we reconstructed rather thick slices (1 mm thickness).

 $DoseReduction = 1 - \frac{1}{NoiseRatio^2}$

K-Edges: More than Dual Energy CT? $\mu(\boldsymbol{r}, E) = f_1(\boldsymbol{r})\psi_1(E) + f_2(\boldsymbol{r})\psi_2(E) + f_3(\boldsymbol{r})\psi_3(E) + \dots$

lodine k-edge imaging of the breast

Gray curves: 120 kV water transmission on a non-logarithmic ordinate individually normalized to 1 at 140 keV.

DECT

Ca-I Decomposition

Macro mode 140 kV, 25/65 keV C = 0 HU, W = 1200 HU

Calcium image

lodine image

Courtesy of Siemens Healthcare

MECT

Ca-Gd-I Decomposition

Chess pattern mode 140 kV, 20/35/50/65 keV C = 0 HU, W = 1200 HU

Calcium image

Gadolinium image

Courtesy of Siemens Healthcare

lodine image

Preclinical Study (40 kg swine, iodine contrast)

Courtesy of Mayo Clinic Rochester, USA, and of Siemens Healthcare, Forchheim, Germany

Potential Advantages of PCCT

- Everything retrospectively on demand
 - Spatial resolution
 - Spectral information
 - Virtual tube voltage setting
- Higher spatial resolution due to
 - smaller pixels
 - lower cross-talk between pixels
- Lower dose/noise due to
 - energy bin weighting
 - no electronic noise
 - Swank factor = 1
 - smaller pixels
- Spectral information on demand
 - single energy
 - dual energy
 - multiple energy
 - virtual monochromatic
 - K-edge imaging

Potential clinical impact

Thank You!

This presentation will soon be available at www.dkfz.de/ct. Job opportunities through DKFZ's international PhD or Postdoctoral Fellowship programs (marc.kachelriess@dkfz.de). Parts of the reconstruction software were provided by RayConStruct[®] GmbH, Nürnberg, Germany.

