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Abstract
Digital Subtraction Angiography aims at selectively displaying vessels
by subtracting an unenhanced mask image from a contrast-enhanced
fluoroscopic image. This strategy requires the data to be static, i.e. to
be acquired without patient or C-arm motion, making conventional DSA
infeasible for dynamic acquisition protocols such as bolus injection
chases. Deep DSA utilizes a convolutional neural network to predict
DSA-like images directly from their corresponding fluoroscopic x-ray
images. Here, we demonstrate the potential of this approach for static
and dynamic fluoroscopic acquisitions of the lower extremities. For
cases where a conventional DSA is feasible we examine very small
deviations and observe predictions for the bolus chase studies of
similar visual impression as with conventional DSA.

Introduction
Digital subtraction angiography (DSA)1 exams are performed by acquiring a
series of x-ray images using a C-arm system while injecting contrast media
into the vessels. The contrast media alters the radiodensity of the vessels,
resulting in a clear contrast with respect to the surrounding tissue present in
the x-ray image. To selectively display these vessels, a mask image acquired
prior to contrast agent injection is subtracted from all subsequent frames .
One major drawback of this technique is its limitation to reasonably static
data, thus making applications dynamic acquisition protocols such as bolus
chase studies2 of the lower extremities impractical.
Predicting the DSA from a single contrast-enhanced x-ray image can be
formulated as an image-translation problem, making convolutional neural
networks (CNNs) likely to be capable of overcoming the mentioned downside
of conventional DSA. Deep DSA3 utilizes a CNN in order to directly learn
DSA-like images from the fluoroscopy image without the need to acquire a
mask image beforehand. Here, we apply Deep DSA to data of clinical
relevance, namely both static and dynamic fluoroscopic x-ray images from
the lower extremities.

Methods
Training Data: All training data were acquired using various models of C-
arms manufactured by Ziehm Imaging with Iodine as contrast agent. The
training data consist of 60 cases from the lower extremities: 57 being static
data (without C-arm motion) and 3 being dynamic bolus chase studies where
the C-arm is moved during the acquisition. 48 static datasets were used for
training and 12 datasets, including the 3 bolus chase studies, were used for
quantitative and qualitative validation.
Training Details: In order for the network to simultaneously preserve the fine
details present in the vessels and capture long-range dependencies
necessary to differentiate the vessels from surrounding structures, we used
an encoder-decoder structure with concatenated skip-connections between
the contracting and expanding part, similar to a U-Net4 (Fig. 1).

Results & Discussion
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X-ray image Conventional DSA Deep DSA Difference Image

Figure 2. X-ray image, conventional DSA, Deep DSA and difference image (Deep
DSA−Conventional DSA) for four angiographic exams: Proximal femur, distal femur,
knee and proximal tibia and bolus chase study of the femur and tibia. Note, that for
the bolus chase study conventional DSA is infeasible and thus no direct comparison
between Deep DSA and conventional DSA can be made.

We observe that Deep DSA output images are generally very similar in
appearance to the conventional DSA for all three static exams (Fig. 2). For
the bolus chase, where there is no conventional DSA available, the Deep
DSA output resembles a conventional DSA in its visual impression. We
notice that Deep DSA fails to adequately visualize several small vessels in
the study of the knee and proximal tibia, which is most likely due to a lack of
training data for those structures and is intended to be further investigated
and ultimately eliminated in future studies.
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To further generalization of the network we used spatial-dropout5 layers
and data augmentation including random flips, rotations, shearing, scaling,
blurring and piecewise affine transformations. Training was performed
patch-wise and the ℒ0 loss between output and ground truth was minimized
using the Adam optimizer.

Figure 1. Structure of the Deep DSA network resembling a U-Net. Downsampling is
performed using max-pooling and upsampling using transposed convolutions. We
employ ReLUs as nonlinearities and spatial dropout to help the network generalize.

Concatenate
Conv k3s1p1- ReLU - Dropout
MaxPool 2x2
TrpConv k4s2p1 - ReLU - Dropout

64 × 256 × 256

128 × 128 × 128

256 × 64 × 64

512 × 32 × 32

512 × 16 × 16

1 × 256 × 256 1 × 256 × 256

P-1.20


