4D Guidance in Interventional Radiology: Prototype Development and Feasibility Study

Kuntz J¹, Sawall S², M. Socher¹, Semmler W¹, Kachelrieß M^{1,2} and Bartling SH^{1,3}

- 1. German Cancer Research Center (DKFZ), Heidelberg, Germany
- 2. Friedrich-Alexander-University Erlangen-Nürnberg, Germany

3. Institute for clinical radiology and nuclear medicine, University Medical Center, Mannheim, Germany

DEUTSCHES KREBSFORSCHUNGSZENTRUM IN DER HELMHOLTZ-GEMEINSCHAFT Introduction

Current X-ray intervention guidance

2D + time

3D manipulate and shoot

4 D (3D +t) Intervention guidance

- Spatial relationships would always be clear
- Interventions would become faster and safer
- More complex interventions could be developed

But: It is currently not considered possible because of prohibitively high radiation doses

Aim: To suggest a solution to this and enable 4D intervention guidance

Introduction

ChenGuang-Hong, Prior Image Constrained Compressed Sensing (PICCS) and Applications in X-ray Computed Tomography. Current Medical Imaging Reviews 2, 119-134. Donoho, Compressed sensing. Information Theory, IEEE Transactions on 52, 1289-1306 (2006). Chen, Prior Image Constrained Compressed Sensing (PICCS). Proc Soc Photo Opt Instrum Eng 6856, 685618 (2008).

Material & Methods

- Phantom and pig (n=5) experiments
- Simulated catheter interventions
- 3D angiographic road mapping through arterial contrast media injection
- Continuous flat-panel data acquisition
- Restrospective dose reduction
- Compressed sensing reconstruction (incl. custom developed PRIDICT (Prior image dynamic interventional CT algorithm))
- Dose comparison to fluoroscopy

Prior scan (FDK)

Full dose time frame (FDK)

Simulated radiation dose reduction Dose similar to X-ray fluoroscopy

Low dose time frame(FDK)

Dose comparison

Guide wire in pig carotis

anteriorposterior

lateral

t

Guide wire in pig carotis + Angio

anteriorposterior

lateral

Guide wire in pig carotis + Angio

S.Bartling

Unfolding stent in pig carotid

S.Bartling

Unfolding stent in pig carotid + Angio

Medical Physics in Radiology

Conclusion

3/5/2012 |

Page 14

- Using compressed sensing algorithms, sparse sampling and prior knowledge 4D intervention guidance is realistic without exceeding acceptable dose levels
- This initial results suggest that this approach is promising and worth to pursue
- The potential impact on intervention guidance and minimal-invasive medicine is high

