CT Data Completion Based on Prior Scans

Thorsten Heußer¹, Marcus Brehm^{1,2}, Stefan Sawall^{1,2}, and Marc Kachelrieß^{1,2}

¹Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany ²Institute of Medical Physics, Friedrich-Alexander-University (FAU), Erlangen, Germany

Purpose:

This work proposes a generalized prior-based artifact correction method (PBAC) for prominent CT artifacts resulting from missing data, e.g. limited angle artifacts, artifacts, and truncation metal artifacts, by performing data completion based on prior knowledge.

The artifact-free prior data are registered to the measured patient data using a deformable registration algorithm, followed by forward projection, smooth sinogram inpainting, and image reconstruction.

About this Work

Motivation CT often suffers from artifacts due to missing data

- Many existing correction methods often struggle with completely removing these artifacts without introducing new artifacts simultaneously
- Idea In many situations, prior data are available » Planning CT
- » Patient database (anatomic atlas) Make use of these prior data to fill the gaps in the measured data • Aim
- Generalized correction method for all kinds of artifacts resulting from missing data

 Simulate artifacts rather than using images containing measured artifacts Ground truth is always available and

- serves as a benchmark for the proposed prior-based correction method Metal artifacts Two pedicle titanium screws
 - Calculate projection values considering polychromatic attenuation
- Truncation artifacts Reduce size of detector such that patient is not completely covered by the field of measurement Limited angle artifacts
 - Reduce scan angle from 180°+fan

to the o obtain an

ong those rays oute $X_{\mathrm{U}}\mathsf{T}g$

ctions as

smooth way

I unmeasured

projections to

rotation and

algorithm [2]. Now, the gaps in the patient projection data are filled with the corresponding data of the registered prior. It should be noted that this data inpainting is done in a smooth way, ensuring a smooth transition between the measured patient data and the incorporated prior data.

The resulting composite sinogram is finally reconstructed using a 3D cone-beam filtered backprojection based on the Feldkamp algorithm [3] to obtain the corrected volume.

Materials and Methods:

X-ray CT often suffers from artifacts due to missing data. In clinical CT for example, so-called hollow projections arise when metal objects, e.g. metal hip implants or metal pedicle screws, cannot be sufficiently penetrated by the xrays. In flat detector CT additional artifacts originate from projection truncation, which occurs when the patient is larger than the field of measurement covered by the detector. Other artifacts result from a limited scan angle when the CT device cannot perform a full 180° rotation, for example in some interventional C-arm CT devices.

Standard Corrections

Prior-Based Artifact Correction (PRAC)

•		
	Input 1	Registration
	– Incomplete/corrupt projection data p	 Register prior image
•	Uncorrected image	uncorrected image <i>f</i> artifact-free image T <i>c</i>
	$- f = X^{-1}p$, where X denotes the	Forward projection
	image reconstruction	- Forward project Tg a missing in p i.e. con
•	Identify missing data	Data innainting
	- Decompose x-ray transform into measured and unmeasured rays, $X = X_M + X_U$, with the latter corresponding to the data that shall be completed	- Obtain corrected proj $p_{cor} = p + X_U Tg$ - Inpainting is done in ensuring a smooth tr
	 For those rays corresponding to X_U , assume the entries of p to be 	between measured a data
	Set to zero	Image reconstructio
•	 Input 2 Nearly artifact-free prior image or volume g of the same or of another 	- Reconstruct correcte obtain corrected images $f_{cor} = X^{-1} (p + X_{II})^{-1}$
	Regis	tration
•	Regis Compensate for differences	tration • Affine registration
•	Regis Compensate for differences between patient and prior - due to a changed patient positioning, if the prior is a different scap of the	tration • Affine registration - Allowing for translati- scaling
•	Regis Compensate for differences between patient and prior - due to a changed patient positioning, if the prior is a different scan of the same patient	tration • Affine registration • Allowing for translation • Deformable registration • More accurate than a
•	Regis Compensate for differences between patient and prior - due to a changed patient positioning, if the prior is a different scan of the same patient - between two actual patients, if the prior is a different patient	 Affine registration Affine registration Allowing for translatiscaling Deformable registrat More accurate than a Sensitive to image ar

Influence of Prior Data

Visualize influence of prior data

on corrected image

Ground Truth

Redness in the PBAC images

quantifies influence of prior data

Results:

We evaluated the prior-based artifact correction method (PBAC) investigating three different patient datasets and using prior data from the same or a different patient.

For the metal case, the severe streak artifacts vanish almost completely while the patient-specific anatomy is preserved in contrast to the linear interpolation approach.

Truncation artifacts can be corrected for efficiently by using common data extrapolation methods. However, the corrected images obtained with PBAC show even better suppression of the cupping artifacts and additionally provide a better overall orientation of the patient

By now, each of these artifacts have often been approached using specific correction methods based on projection data extrapolation or interpolation.

However, in many cases prior data are available which can, potentially, be used to correct for the missing CT data. These prior data may be a different scan of the same patient, e.g. a planning CT, or even a patient from a patient database. We propose to use these prior data to fill the gaps in the CT data and thereby to reduce the artifacts.

In order to be able to compare the corrected images to the ground truth (GT), we chose to simulate the investigated artifacts rather than to use data containing real artifacts. We use different scans of the same patient as well as different patients as prior data to perform data completion.

Results - MPR

 Reconstruction is done using 3D All datasets are 3D volumes, measured at clinical spiral CT filtered backprojection. systems at the German Cancer Research Center (DKFZ), Heidelberg,

anatomy.

In the limited angle case, there are still significant artifacts left after PBAC. Compared to standard correction techniques however, the results obtained with the proposed correction method show a significant improvement in artifact suppression.

Conclusion:

PBAC is a highly effective method to reduce all kinds of artifacts resulting from missing data if adequate prior data is available.

Acknowledgment:

The reconstruction sofware was provided by RayConStruct[®] GmbH, Nürnberg, Germany. We want to thank Martina Jochim and Anne-Mareike Rau (DKFZ, Heidelberg, Germany) for their help in collecting the rawdata. We also thank Prof. Dr. Peter Bachert (DKFZ, Heidelberg, Germany) for his support.

To compensate for differences between acquisitions due to a changed patient positioning or between two actual patients, the prior data are co-registered with the measured patient data. We use a deformable registration method based on the demons algorithm [1].

The registered prior volume is forward projected using Joseph's

Center = 0 HU / Width = 1000 HU (reconstructions and difference images)

References:

[1] M. Brehm, P. Paysan, M.Oelhafen, P. Kunz, and M. Kachelrieß. Self-adapting cyclic registration for motioncompensated cone-beam CT in image-guided radiation therapy. Med. Phys., in Press.

[2] Peter M. Joseph. An improved algorithm for reprojecting rays through pixel images. TMI, MI-2(3):192–196, November 1982.

[3] LA Feldkamp, LC Davis, and JW Kress. Practical cone-beam algorithm. JOSA A, 1(6):612–619, 1984.

Send correspondence request to: Thorsten Heußer thorsten.heusser@dkfz.de X-Ray Imaging and CT (E025)

German Cancer Research Center 69120 Heidelberg, Germany

