Importance of Prior Information for Accurate Scatter Correction of Truncated Cone-Beam CT Data

Nadine Waltrich¹, Sedat Aktaş¹, Stefan Sawall¹, Joscha Maier¹, Kai Stannigel², Kai Lindenberg², and Marc Kachelrieß¹

¹German Cancer Research Center (DKFZ), Heidelberg, Germany ²Sirona Dental Systems GmbH, Bensheim, Germany

Comparison of different detruncation algorithms with respect to scatter correction to provide a quantitative scatter correction approach for truncated CBCT data.

no scatter correction

good scatter correction

C = 0 HU; W = 2000 HU

Patient Positioning

Patient Positioning

FOM of a dental CT system

Patient Positioning

FOM of a dental CT system

Monte Carlo Scatter Simulation

 Monte Carlo simulations are used to simulate the physical path of photons through the patient. This is done based on a model (prior volume) of the scanned object.

measured intensity I_{PS} = primary intensity I_{P} + scattered intensity I_{S}

Sirona

dkfz.

Sirona

dkfz.

Sirona

dkfz.

Sirona

K. Sourbelle, M. Kachelrieß, and W. A. Kalender.

Sirona

Reconstruction from truncated projections in CT using adaptive detruncation. European Radiology, 15(5):1008-1014, May2005.

T. Heußer, M. Brehm, L. Ritschl, S. Sawall, and M. Kachelrieß. Prior-based artifact correction (PBAC) in computed tomography. Med. Phys., 41:021906-1-16, 2014.

Sirona

Results

Adaptive Detruncation

Prior Detruncation

Ground Truth (identical prior)

Sirona

Dentsply Different detruncation algorithms were used for scatter estimation and correction for this phantom. The volumes are also corrected for beam-hardening. C = 0 HU, W = 2000 HU

Results

Adaptive Detruncation

Sirona

Prior Detruncation

Ground Truth (identical prior)

Dentsply Different detruncation algorithms were used for scatter estimation and correction for this phantom. The volumes are also corrected for beam-hardening. C = 0 HU, W = 2000 HU

Results

Adaptive Detruncation

Sirona

Prior Detruncation

Ground Truth (identical prior)

Dentsply Different detruncation algorithms were used for scatter estimation and correction for this phantom. The volumes are also corrected for beam-hardening. C = 1000 HU, W = 5000 HU

Conclusion

- Images corrected using a scatter estimation prior based on a simple detruncation algorithm suffer from an incorrect scatter estimation.
- In all cases the correction based on the prior-based detruncation leads to the most accurate CT-values, as expected. The remaining CT values only differ by 10 HU for a dental CT case.
- For the adaptive detruncation, the CT values differ by 67 HU and the reconstructions show an acceptable CT-value homogeneity.

Thank You!

Job opportunities through DKFZ's international PhD or Postdoctoral Fellowship programs (www.dkfz.de), or directly through Marc Kachelriess (marc.kachelriess@dkfz.de).

Parts of the reconstruction software were provided by RayConStruct[®] GmbH, Nürnberg, Germany.

