Reanimating Patients using Motion Transfer: A Cardiorespiratory Motion Ground Truth Based on Clinical CT Patient Data

> Johannes Mayer, Sebastian Sauppe, Christopher M. Rank, and <u>Marc Kachelrieß</u>

German Cancer Research Center (DKFZ) Heidelberg, Germany www.dkfz.de/ct

Introduction

 Motion compensation (MoCo) is an important tool in medical imaging.

3D CBCT

5D MoCo

 Hard to assess algorithms quantitatively as there is no motion ground truth available.

S. Sauppe, A. Hahn, M. Brehm, P. Paysan, D. Seghers, and M. Kachelrieß, "Five-dimensional motion compensation for respiratory and cardiac motion with cone-beam CT of the thorax region," SPIE Medical Imaging Conference Record 97830H:1-9, March 2016

- Generate motion phantoms based on voxelized patient data.
- Provide 4D and 5D motion ground truth (GT) patient data including motion information.

Motion Transfer

Motion Transfer with Deformable Image Registration

1. Motion extraction

 $f_t({m r})$ Motion data (phase *t*) in source anatomy

2. Anatomy matching

 $g_0({m r})$ Static patient data in destination anatomy

 $oldsymbol{d}(oldsymbol{r})$ Anatomy map relating both anatomies

 $f_t(\boldsymbol{r}) = f_0(\boldsymbol{m}_t(\boldsymbol{r}))$

 $oldsymbol{m}_t(oldsymbol{r})$ Motion vector fields (MVFs)

 $g_0(\boldsymbol{r}) \doteq f_0(\boldsymbol{d}(\boldsymbol{r}))$

3. MVF transfer

Cardiac Reanimated Destination Patient

- We successfully applied the approach to cardiac motion.
- A well-regularized anatomy map leads to realistic cardiac motion transfer.

Cardio-Respiratory Motion Phantom

 Composition of cardiac and respiratory MVFs leads to 5D motion

CBCT Simulations of Phantom

- The motion phantom was used to simulate rawdata corresponding to a Varian True Beam scan.
- Cardio-respiratory motion was simulated by forward projecting the motion phantom according to each projection's cardiac and respiratory phase.
- Phase-correlated Feldkamp (PCF) and artifact-specific cyclic motion compensation (acMoCo^{1,2,3}) performed for reconstruction.

¹ Brehm, Paysan, Oelhafen, Kunz, and Kachelrieß, "Self-adapting cyclic registration for motion-compensated cone-beam CT in image-guided radiation therapy," Med. Phys. 39(12), 7603-7618, 2012.

² Brehm, Paysan, Oelhafen, and Kachelrieß, "Artifact-resistant motion estimation with a patient-specific artifact model for motion-compensated cone-beam CT" Med. Phys. 40(10):101913, 2013.

³ Brehm, Sawall, Maier, and Kachelrieß, "Cardio-respiratory motioncompensated micro-CT image reconstruction using an artifact modelbased motion estimation" Med. Phys. 42(4):1948-1958, 2015.

acMoCo of Respiratory Motion

Phase-correlated FDK reconstructions (PCF)

- 20% dose usage
- significant artifacts

Motion-Compensated reconstructions (acMoCo)

- 100% dose usage
- nearly artifact-free

Comparison of GT and acMoCo

Ground truth respiratory motion

- ideal image
- no artifacts

Motion-Compensated reconstructions (acMoCo)

- 100% dose usage
- nearly artifact-free

One can detect a slight motion underestimation in the acMoCo images.

Evaluation of MVF Deviation

- Each ground truth voxel position $m_t^{
 m GT}(r)$ is known at each time point. A direct comparison to the estimated motion $m_t^{
 m acMoCo}(r)$ is performed.
- The acMoCo algorithm takes all phase-correlated images into account during motion compensation to achieve 100% dose usage.
- Hence to quantify the deviation between the estimated MVFs and the ground truth one needs to evaluate the deviation average over all phases:

$$\Delta(\boldsymbol{r}) = \left\| \langle \boldsymbol{m}_t^{\text{GT}}(\boldsymbol{r}) - \boldsymbol{m}_t^{\text{acMoCo}}(\boldsymbol{r}) \rangle_t \right\|$$

Motion Vector Field Deviation

MVF deviation

$$\Delta(\boldsymbol{r}) = \left\| \langle \boldsymbol{m}_t^{\text{GT}}(\boldsymbol{r}) - \boldsymbol{m}_t^{\text{acMoCo}}(\boldsymbol{r}) \rangle_t \right\|$$

Motion-compensated reconstructions (acMoCo)

- 100% dose usage
- nearly artifact-free

Largest deviation in maximum-amplitude phase. Motion underestimation appears at the diaphragm.

C = 3 mm, W = 6 mm

C = 0 HU, W = 1400 HU dkfz.

Respiratory MVF Accuracy

MVF deviation $\,\Delta({m r})\,$

C = 3 mm, W = 6 mm

GT respiratory motion

Left lung Right lung Inner thorax

Distribution of Deviation in ROI

ROI	Deviation
Left lung	(1.42 ± 0.77) mm
Right lung	(1.91 ± 1.02) mm
Inner thorax	(1.46 ± 0.92) mm

acMoCo of Cardiac Motion

Phase-correlated FDK reconstructions (PCF)

- 20% dose usage
- significant artifacts

Motion-compensated reconstructions (acMoCo)

- 100% dose usage
- nearly artifact-free

One can detect a slight motion underestimation in the acMoCo images.

Cardiac MVF Accuracy

MVF deviation $\Delta({m r})$

Distribution of Deviation in ROI

ROI	Deviation
Heart	(0.92 ± 0.95) mm
Ventricles	(1.60 ± 1.24) mm

Conclusion

- Successfully simulated a 5D cardiorespiratory motion phantom on patient data. (A careful regularization of the anatomy map is needed for a reasonable motion transfer.)
- Evaluation of the acMoCo algorithm shows an accuracy of about 1.5 mm.
- Motion transfer also works between different modalities:

Animated 3D MR

Thank You!

This presentation will soon be available at www.dkfz.de/ct.

Job opportunities through DKFZ's international PhD or Postdoctoral Fellowship programs (www.dkfz.de), or directly through Marc Kachelriess (marc.kachelriess@dkfz.de).

Parts of the reconstruction software were provided by RayConStruct[®] GmbH, Nürnberg, Germany.

