Invarianzen Neuronaler Netze am Beispiel der CT Rauschreduktion

Elias Eulig^{1,2}, Björn Ommer^{2,3}, and <u>Marc Kachelrieß^{1,2}</u>

¹German Cancer Research Center (DKFZ), Heidelberg, Germany ²Heidelberg University, Heidelberg, Germany ³Ludwig Maximilian University, Munich, Germany

FBP(10 mAs)

IRLNet(10 mAs, T-Net)

IRLNet(10 mAs, A-Net)

Noise Removal Example 3

Low dose images (1/4 of full dose)

Andrew D. Missert, Shuai Leng, Lifeng Yu, and Cynthia H. McCollough. Noise Subtraction for Low-Dose CT Images Using a Deep Convolutional Neural Network. Proceedings of the 5th CT-Meeting: 399-402, 2018.

Noise Removal Example 3

Denoised low dose

Andrew D. Missert, Shuai Leng, Lifeng Yu, and Cynthia H. McCollough. Noise Subtraction for Low-Dose CT Images Using a Deep Convolutional Neural Network. Proceedings of the 5th CT-Meeting: 399-402, 2018.

Noise Removal Example 3

Full dose

Andrew D. Missert, Shuai Leng, Lifeng Yu, and Cynthia H. McCollough. Noise Subtraction for Low-Dose CT Images Using a Deep Convolutional Neural Network. Proceedings of the 5th CT-Meeting: 399-402, 2018.

Motivation

In general:

- Deep learning methods are employed for many problems.
- However, they lack interpretability (black-box).
- Recent advancement in generative modelling signal false confidence.

Aim:

- Lay fundamentals for post-hoc interpretability and robustness analysis of denoising DNNs.
- Use two simple denoising networks *f* as initial examples:
 - Chen's simple 3-layer CNN trained with $\mathcal{L}_2~\text{loss}^1$
 - Yang's Wasserstein GAN with additional perceptual loss²
- See what they have learned to represent and what to ignore: For a given output x´there are many inputs x that produce the same output x´ = f(x).
- Employ low dose CT image and projection dataset for all studies.³

Figure from reference [2]

¹H. Chen et al., "Low-dose CT denoising with convolutional neural network", ISBI 2017, 2017.

²Q. Yang et al., "Low-Dose CT Image Denoising Using a Generative Adversarial Network [...]", in IEEE TMI, vol. 37, no. 6, 2018.

³C. McCollough et al., "Data from low dose CT image and projection data [data set]," The Cancer Imaging Archive, 2020.

Recap 1: What is an Autoencoder (AE)?

- In and output domain are the same, here x.
- Bottleneck z enforces the encoder and decoder to do a good job.

• Examples:

- Principal component analysis (linear autoencoder), lossless
- PCA with dimensionality reduction (nonlinear due to clipping), lossy
- Image compression and decoding, e.g. jpeg, lossy
- Latent space typically not interpretable.

Recap 2: What is a Variational AE (VAE)?

- Make latent space regular.
- Allow to sample in latent space from a given distribution, here: normal distribution.

$$x - \mathbf{E} - (\mu, \sigma) \quad z \sim \mathcal{N}(\mu, \sigma) - \mathbf{D} \quad -\bar{x} = D(z) = \\ = D(\mathcal{N}(E(x)))$$

- The VAE is a generative model.
- It allows to generate new data by sampling new values from the multivariate normal distribution.

Method Recovering Invariances

- 1. Our work is based on Rombach et al.¹
- 2. Use denoising methods Chen et al. & Yang et al.
- 3. Train VAE to learn a complete data representation of the low dose images *x*.
- 4. For each denoising method and layer in the network we wish to evaluate, train a cINN to recover the invariances.
- 5. For a given test image, sample 250 invariances v, apply the inverse mapping t^{-1} and apply the pretrained decoder D.

t^{-1} maps $\mathcal{N}(0,1)$ onto $p(\bar{z}|z)$.

Building block of INN: Invertible block, ξ_{12} and δ_{12} are CNNs or NNs

 $x_1 \exp(\xi_2(\hat{x}_2)) + \delta_2(\hat{x}_2) = \hat{x}_1$ $x_2 \exp(\xi_1(x_2)) + \delta_1(x_1) = \hat{x}_2$

¹Rombach et al. "Making sense of CNNs: Interpreting deep representations and their invariances with INNs", ECCV 2020.

Alternative: Use VAE in high dose domain, i.e. VAE_v, to visualize the invariances.

Results Denoising (Yang et al.) $f = \Psi \circ \Phi$

Results Denoising (Yang et al.) $f = \Psi \circ \Phi$

Conv k3 f32 F Conv k3 f32 G Conv k3 f32 G

Results Sampling Invariances (Yang et al.)

Results

Sampling Invariances in Target Domain (Chen et al.)

Test

Feed sampled invariances back into the network

Conclusion & Outlook

- Novel method to highlight invariances of a given denoising network
- Architecture-agnostic (also works for MRI, PET, ...)
- Feeding invariances back leads to different outputs
 → VAE is a severe limitation
- Outlook
 - Improve VAE (use conditional VAE)
 - Further analyze sampled invariances
 - Only show "interesting" invariances to the reader

Idea: Condition VAE on f(x)

• No need to encode what's in the denoised image f(x).

$$x - \underbrace{\mathbf{E}}_{-(\mu,\sigma)} \underbrace{f(x)}_{z \sim \mathcal{N}(\mu,\sigma)}_{\mathbf{D}} - \overline{\mathbf{D}}_{-\overline{x}} = D(z,f(x))$$

- Note: This also eliminates the need for a cINN as we can now directly sample from $p(x|z \sim \mathcal{N}(E(x)), f(x))$.

Results From VAE to conditional VAE

dkfz.

Thank You!

This presentation will soon be available at www.dkfz.de/ct. This work was supported in part by the Helmholtz International Graduate School for Cancer Research, Heidelberg, Germany.

Conference Chair Marc Kachelrieß, German Cancer Research Center (DKFZ), Heidelberg, Germany