Deformable 3D-2D Registration-Based Running Prior for Low Dose Tomographic X-Ray Fluoroscopy

Barbara Flach, Marcus Brehm, Jan Kuntz, Rolf Kueres, Sönke Bartling, and <u>Marc Kachelrieß</u>

German Cancer Research Center (DKFZ), Heidelberg, Germany

Interventional Radiology

Interventional radiology:

- Minimally invasive interventions guided by x-ray imaging techniques
- C-arm systems
- Projective fluoroscopy:
 - 2D projections
 - Position of interventional material is often ambiguous.
 - To clarify a 3D volume has to be acquired or trialand-error approaches are applied.

Low dose tomographic fluoroscopy:

- 3D volumes
- For clinical acceptance the dose should be limited to the same level as that of projective fluoroscopy.
- Volumes have to be reconstructed from very few projections acquired at a very low dose level.

Idea of PrIDICT-Algorithm

3D+T Fluoroscopy at 2D+T Dose Guide Wire in the Carotis of a Pig with Angio Roadmap Overlay

Dose of the yet unoptimized approach: 20 to 50 μ Gy/s.

This work was awarded the intervention award 2013 of the German Society of Neuroradiology (DGNR). This work was further selected as the Editor's Pick for the Medical Physics Scitation site.

3D+T Image Guidance at 2D+T Dose

Stent Expansion in the Carotis of a Pig with Angio Roadmap Overlay

Dose of the yet unoptimized approach: 20 to 50 μ Gy/s.

This work was awarded the intervention award 2013 of the German Society of Neuroradiology (DGNR). This work was further selected as the Editor's Pick for the Medical Physics Scitation site.

Workflow of Intervention

- Apart from the prior scan the workflow is identical to projective fluoroscopy.
- In contrast to projective fluoroscopy each projection is taken from a different view angle here.
- Aims:
 - Move the prior scan into the intervention scan
 - Continuosly update the prior data during the intervention
 - Do this with the sparse sampling only

Static Prior vs. Running Prior

PrIDICT using static prior

Wrong wire position

PrIDICT using running prior

Correct wire position

C = 0 HU, W = 1500 HU

Workflow of Running Prior Technique³

³ B. Flach, J. Kuntz, M. Brehm, R. Kueres, S. Bartling, and M. Kachelrieß, "Low dose tomographic fluoroscopy: 4D intervention guidance with running prior", Med. Phys. 40:101909, 11 pages, October 2013.

Workflow of Running Prior Technique⁴

⁴ B. Flach, M. Brehm, S. Sawall, and M. Kachelrieß, "Deformable 3D-2D registration and its application to low dose tomographic fluoroscopy", submitted to Phys. Med. Biol.

Deformable 3D-2D Registration

- Deform prior image p(r) to match the rawdata q:
 - Displacement vector field (DVF): $m{u}(m{r}) = (u_1(m{r}), u_2(m{r}), u_3(m{r}))^{\mathrm{T}}$
 - Deformed image: $p_u(r) = p(r + u(r)) = (p \circ (\text{Id} + u))(r)$
 - Matching criterion: $S[u] = \|Xp(r + u(r)) q\|_2^2$ (rawdata fidelity)
 - Velocity vector field: $oldsymbol{v}(oldsymbol{r}) = (v_1(oldsymbol{r}), v_2(oldsymbol{r}), v_3(oldsymbol{r}))^{\mathrm{T}} = \partial_t oldsymbol{u}(oldsymbol{r})$
 - Smoothness of a vector field $w(r) = (w_1(r), w_2(r), w_3(r))^{T}$ achieved by minimizing $R[w] = \sum_{d=1}^{3} \sum_{r} \langle \nabla_r w_d(r), \nabla_r w_d(r) \rangle$
 - Diffusive regularization: R[u]
 - Fluid regularization: $R[v] = R[\partial_t u]$
- Determine the DVF u by minimizing the following cost function:

 $C[\boldsymbol{u}] = S[\boldsymbol{u}] + \beta R[\boldsymbol{u}] + \gamma R[\partial_t \boldsymbol{u}]$

Measurements

• System:

Volume CT prototype

- Flat detector on clinical CT gantry
- Geometry like C-arm systems

Experimental setup

- Prior scan:
 - Before intervention
 - $N_{360} = 600 \text{ projections per } 360^{\circ}$
 - $T_{\rm rot} = 19 \text{ s}/360^{\circ}$
 - 1 single rotation
- Intervention scan:
 - During intervention
 - $N_{180} = 15$ projections per 180°
 - $T_{\rm rot} = 4 \, {\rm s} \, (= 2 \, {\rm s}/180^\circ)$
 - Many rotations (depending on time needed for intervention)
 - Guide wire inserted into the carotid of the pig's neck during the scan
- Data of two experiments with different pigs are presented.
- Pigs are moved manually between prior and intervention scan.
- Algorithms are always initialized with a DVF resulting from an affine registration.

C = 0 HU, W = 1500 HU

Images: C = 0 HU, W = 1500 HU Difference images: C = 0 HU, W = 1000 HU

Error in Rawdata Domain Pig 2 (15 Projections)

Initial error

Residual error 3D-3D

Residual error 3D-2D

C = 0.0, W = 0.5

Conclusion

- Our proposed 3D-2D registration is robust and stable also in case of very few projections:
 - High matching in image as well as in rawdata domain
 - Without introducing artificial motion
- In case of few projections 3D-2D registration is superior to 3D-3D registration.

- Improves temporal resolution of low dose tomographic fluoroscopy.
- Method may be useful for many other applications.

Thank You!

Marc Kachelrieß, German Cancer Research Center (DKFZ), Heidelberg, Germany

This presentation will soon be available at www.dkfz.de/ct.

This study was supported by the Deutsche Forschungsgemeinschaft (DFG) under grant KA 1678/6-1. Parts of the reconstruction software were provided by RayConStruct[®] GmbH, Nürnberg, Germany.