Radiation Risk Minimizing Tube Current Modulation (rmTCM) for X-Ray Computed Tomography

Joscha Maier¹, Laura Klein^{1,2}, Stefan Sawall^{1,2}, Chang Liu³, Andreas Maier³, Michael Lell⁴, and Marc Kachelrieß^{1,2}

¹German Cancer Research Center (DKFZ), Heidelberg, Germany ²Ruprecht-Karls-University, Heidelberg, Germany ³Pattern Recognition Lab, Friedrich-Alexander-University, Erlangen, Germany ⁴Klinikum Nürnberg, Nürnberg, Germany

DEUTSCHES KREBSFORSCHUNGSZENTRUM IN DER HELMHOLTZ-GEMEINSCHAFT

Motivation

- Tube current modulation (TCM) is a well-established tool to minimize x-ray dose while maintaining image quality.
- Conventional tube current modulation approaches do not account for (all) radiation-sensitive organs.
- Additional prior knowledge may enable more sophisticated approaches.
 Bad s N₀
- Here: Use deep learningbased prior knowledge to perform a tube current modulation that minimizes the radiation risk at constant image quality.

Radiation Risk Minimizing Tube Current Modulation (rmTCM) – Basic Workflow

1. Coarse reconstruction from two scout views

- 2. Segmentation of radiationsensitive organs
- 3. Calculation of the effective dose per view using the deep dose estimation (DDE)
- 4. Determination of the tube current modulation curve that minimizes the radiation risk

Radiation Risk Minimizing Tube Current Modulation (rmTCM) – Basic Workflow

1. Coarse reconstruction from two scout views

X. Ying, et al., "X2CT-GAN: Reconstructing CT From Biplanar X-Rays With Generative Adversarial Networks," *CVPR 2019*

2. Segmentation of radiationsensitive organs S. Chen, M. Kachelrieß et al., "Automatic multi-organ segmentation in

S. Chen, M. Kachelrieß et al., "Automatic multi-organ segmentation in dual-energy CT (DECT) with dedicated 3D fully convolutional DECT networks." Med. Phys. 2019

- 3. Calculation of the effective dose per view using the deep dose estimation (DDE)
- 4. Determination of the tube current modulation curve that minimizes the radiation risk

View angle

Deep Dose Estimation (DDE)

- Monte Carlo (MC) simulation is the gold standard for patientspecific dose estimation, but too slow to be applied routinely.
- Training of a deep convolution to reproduce MC simulations given only the CT image and a 1st order dose estimate as input.

J. Maier, E. Eulig, S. Dorn, S. Sawall, M. Kachelrieß, in *Proceedings of the IEEE Nuclear Science Symposium* and *Medical Imaging Conference* (2018).

TCM Minimizing the Radiation Risk Determination of the modulation curve

- Calculation of dose estimates $D_T(\alpha)$ for every view angle α using the deep dose estimation.
- Calculation of the effective dose according to the ICRP weighting factors w_T .

Table 3. Recommended tissue weighting factors.		
Tissue	wт	∑ w₁
Bone-marrow (red), Colon, Lung, Stomach,	0.12	0.72
Breast, Remainder tissues*		
Gonads	0.08	0.08
Bladder, Oesophagus, Liver, Thyroid	0.04	0.16
Bone surface, Brain, Salivary glands, Skin	0.01	0.04
	Total	1.00

- Total effective dose: $D_{\text{eff}}(I(\alpha)) \propto \sum_{\alpha} I(\alpha) \cdot \left(\sum_{T} w_T \cdot D_T(\alpha) \right)$
- Choose tube current modulation curve $I(\alpha)$ such that effective dose is minimal at constant image quality.

Results – TCM at 70 kV

Angular modulation, abdomen

Results – Reduction of Effective Dose at 70 kV

 \rightarrow Reduction of the effective dose for the complete scan: 12 %

Conclusions

- Deep learning-based approaches may open new options for more sophisticated tube current modulation strategies.
- Here, the potential of a tube current modulation that minimizes the radiation risk instead of the mAs product was investigated.
- Compared to a conventional tube current modulation, the effective dose could be further reduced by about 12 %, 8 %, and 7 % for 70 kV, 120 kV and 150 kV, respectively.

Thank You!

This presentation is available at www.dkfz.de/ct

Job opportunities through DKFZ's international PhD or Postdoctoral Fellowship programs (www.dkfz.de), or directly through Prof. Dr. Marc Kachelrieß (marc.kachelriess@dkfz.de).

Parts of the reconstruction software were provided by RayConStruct® GmbH, Nürnberg, Germany.

