Bewegungskorrektur in der tomographischen (3D+Zeit) Niedrigstdosis-Fluoroskopie mittels Running Prior

Barbara Flach^{1,2}, Jan Kuntz^{1,2}, Marcus Brehm^{1,2}, Rolf Kueres², Sönke Bartling^{2,3} and <u>Marc Kachelrieß^{1,2}</u>

¹Friedrich-Alexander-University (FAU), Erlangen, Germany ²German Cancer Research Center (DKFZ), Heidelberg, Germany ³Institute for Clinical Radiology and Nuclear Medicine, Mannheim, Germany

Interventional Radiology

Interventional radiology:

- Minimally invasive interventions guided by x-ray imaging techniques
- C-arm systems
- Projective fluoroscopy:
 - 2D projections
 - Position of interventional material is often ambiguous.
 - To clarify a 3D volume has to be acquired or trial-and-error approaches are applied.

Low dose tomographic fluoroscopy:

- 3D volumes
- For clinical acceptance the dose should be limited to the same level as that of projective fluoroscopy.

Realization of Low Dose Tomographic Fluoroscopy

• Low dose by:

- Low tube current
- Very few projections (pulsed mode)
- Advantages of intervention guidance:
 - Repetitive scanning of the same body region.
 - Interventional materials are fine structures (few voxels) of high contrast (metal).

¹ J. Kuntz, R. Gupta, S.O. Schönberg, W. Semmler, M. Kachelrieß, and S. Bartling, "Real-time x-ray-based 4D image guidance of minimally invasive interventions", Eur. Radiol., 23(6): 1669-1677, June 2013. ² J. Kuntz, B. Flach, R. Kueres, W. Semmler, M. Kachelrieß, and S. Bartling, "Constrained reconstructions for 4D intervention guidance", Phys. Med. Biol., 58(10): 3283-3300, May 2013.

Why Running Prior?

- Patient motion after prior scan
- Allow for patient motion by continuously updating the prior
- Do this with the available projection data
 - Deformation via registration
 - Incorporation of current projections into the prior

Workflow of Running Prior Technique¹

¹ B. Flach, J. Kuntz, M. Brehm, R. Kueres, S. Bartling, and M. Kachelrieß, "Low dose tomographic fluoroscopy: 4D intervention guidance with running prior", Med. Phys. 40:101909, 11 pages, October 2013.

Measurement

System: • Volume CT prototype

- Flat detector on clinical **CT** gantry
- Geometry like C-arm systems

Experimental setup

Prior scan: •

- Before intervention
- N₃₆₀ = 600 projections per 360°
- $T_{\rm rot} = 19 \, {\rm s}/{360^{\circ}}$
- 1 single rotation

Static prior

Difference to target image

Position before intervention

Position during intervention

Position after deformation

Intervention scan: •

- During intervention
- *N*₁₈₀ = 15 projections per 180°
- $T_{\rm rot} = 4s (= 2 s/180^{\circ})$
- Many rotations (depending on time needed for intervention)
- Guide wire inserted into the carotid of the pig's head during the scan

Improvement in Rawdata Difference

Difference between measured rawdata and forward projected static prior

Difference between measured rawdata and forward projected running prior

C/W = 0.0/0.5

Static Prior vs. Running Prior

PrIDICT using static prior

PrIDICT using running prior

Artifacts resulting from motion

No artifacts

Static Prior vs. Running Prior

PrIDICT using static prior

Wrong wire position

PrIDICT using running prior

Correct wire position

dkfz.

C = 0 HU, W = 1500 HU

Benefit of Running Prior

- Advantages of the running prior compared to the static prior:
 - Less artifacts in the update volumes resulting from motion between prior scan and intervention scan
 - Higher reliability because interventional material is displayed at correct position
- No additional dose needed for continuously updating the prior.

 4D intervention guidance at dose level comparable to projective fluoroscopy may become possible also with patient motion by using the running prior technique.

Thank You!

This presentation will soon be available at www.dkfz.de/ct.

This study was supported by the Deutsche Forschungsgemeinschaft (DFG) under grant KA 1678/6-1. The high performance compute hardware was provided by the Universitätsbund Erlangen-Nürnberg e.V., Erlangen, Germany. Parts of the reconstruction software were provided by RayConStruct[®] GmbH, Nürnberg, Germany.

