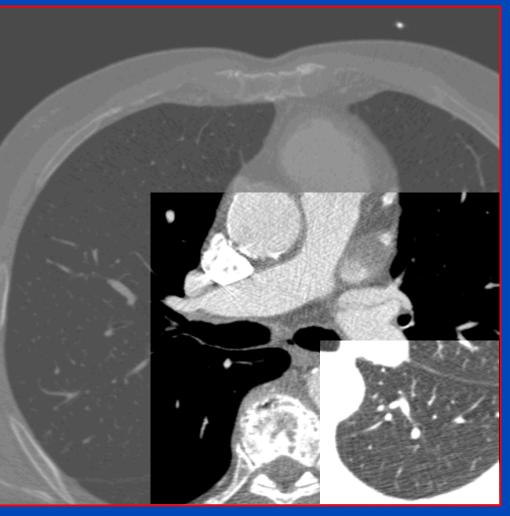

Organ-Specific Context-Sensitive CT Image Reconstruction and Display

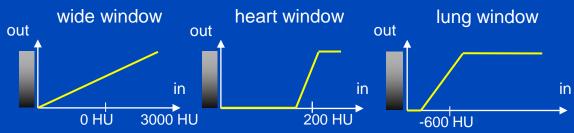
Sabrina Dorn^{1,2}, Shuqing Chen³, Stefan Sawall^{1,2}, David Simons¹, Matthias May³, Joscha Maier^{1,2}, Michael Knaup¹, Heinz-Peter Schlemmer¹, Andreas Maier³, Michael Lell⁴, and Marc Kachelrieß^{1,2}

¹German Cancer Research Center (DKFZ), Heidelberg, Germany ²University of Heidelberg, Germany ³Friedrich-Alexander University Erlangen-Nürnberg, Germany ⁴Hospital Nürnberg, Paracelsus Medical University

smooth kernel reconstruction



sharp kernel reconstruction



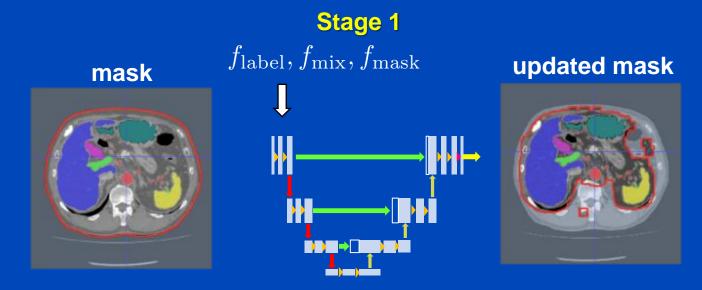
	Center	Width
pelvis	35 HU	350 HU
soft tissue	60 HU	400 HU
abdomen	40 HU	300 HU
liver	40 HU	200 HU
lung	-600 HU	1200 HU
heart	200 HU	600 HU
bone	450 HU	1500 HU
spine	40 HU	350 HU
mediastinum	40 HU	400 HU
angiography	80 HU	700 HU

sliding thin slab (STS) display with maximum intensity projection (MIP)

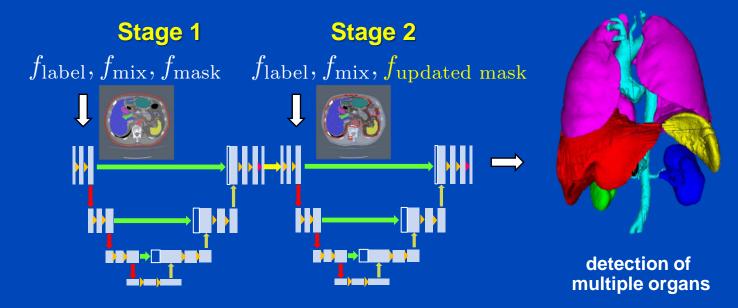
sliding thin slab (STS) display with mean intensity projection (mean-IP)

0.5 mm slab

10 mm slab



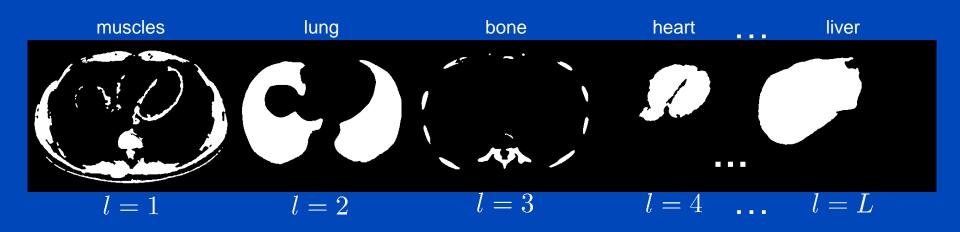
To combine mutually exclusive CT image properties into a single organ-specific image reconstruction and display using prior anatomical information.


- Prior anatomical knowledge is gained from an automatic multiorgan segmentation
- Hirarchical 3D fully convolutional neural network consisting of two consecutive stages¹
 - Coarse-to-fine segmentation based on 3D U-Net
 - 1. Detection of abdominal cavity

[1] S. Chen, H. Roth, S. Dorn, M. May, A. Cavallaro, M. Lell, M. Kachelrieß, H. Oda, K. Mori, and A. Maier. Towards Automatic Abdominal Multi-Organ Segmentation in Dual Energy CT using Cascaded 3D Fully Convolutional Network. *CoRR*, 2017

- Prior anatomical knowledge is gained from an automatic multiorgan segmentation
- Hirarchical 3D fully convolutional neural network consisting of two consecutive stages¹
 - Coarse-to-fine segmentation based on 3D U-Net
 - **1. Detection of abdominal cavity**
 - 2. Detection of target organ boundaries

[1] S. Chen, H. Roth, S. Dorn, M. May, A. Cavallaro, M. Lell, M. Kachelrieß, H. Oda, K. Mori, and A. Maier. Towards Automatic Abdominal Multi-Organ Segmentation in Dual Energy CT using Cascaded 3D Fully Convolutional Network. *CoRR*, 2017


Open-source implementation of two stages cascaded network² \rightarrow fine-tuning of pre-trained network to fit to our data

- 42 contrast-enhanced clinical torso DECT datasets
 - 30 for training, 6 for validation, 6 for test
- NVIDIA GeForce GTX 1080 Ti
- Training: ~ 3 days per stage
- Segmentation: several minutes

- Automatic segmentation: liver, kidneys, spleen, lung, aorta.
- Thresholding remaining voxels into the following tissue types: muscles, fat, bone, vasculature.
- Currently, manual corrections are necessary (until today).

\rightarrow Segmentation delivers a binary mask $m_l(\mathbf{r})$ for each tissue label

• Smoothing of the binary masks $m_l(\mathbf{r})$ to cope with the boundaries of adjacent anatomical structures.

$$\bar{w}_{l}(\mathbf{r}) = m_{l}(\mathbf{r}) * G(\mathbf{r}) \qquad \qquad G(\mathbf{r}) = \frac{1}{\sigma\sqrt{2\pi}} \exp^{-\frac{\mathbf{r}^{2}}{2\sigma}}$$
$$w_{l}(\mathbf{r}) = \frac{\bar{w}_{l}(\mathbf{r})}{\sum_{l}^{L} \bar{w}_{l}(\mathbf{r})} \qquad \qquad \sum_{l}^{L} w_{l}(\mathbf{r}) = 1$$

- Zero-mean Gauss, σ determines width of overlap in mm.
- Weighting masks $w_l(\mathbf{r})$ allow for individual settings for each organ.

Context-sensitive (CS) = organ-dependent parameter adaptation

Context-Sensitive (CS) Reconstruction

• Reconstruct **B** basis $f_b(\mathbf{r})$ emphasizing certain image properties

- $-f_1$ = smooth reconstruction (for e.g. soft tissue, liver, etc.)
- $-f_2$ = sharp reconstruction (for e.g. lung, bone, etc.)

The CSR image is defined as •

$$f_{\text{CSR}}(\mathbf{r}) = \sum_{l=1}^{L} \sum_{b=1}^{B} w_l(\mathbf{r}) \cdot \Gamma(l, b) \cdot f_l(\mathbf{r})$$
$$\Gamma(l, b) = \begin{cases} 1 & \text{, if basis image } b \text{ is assigned to label } l \\ 0 & \text{, otherwise.} \end{cases}$$

#labels • L

L > B

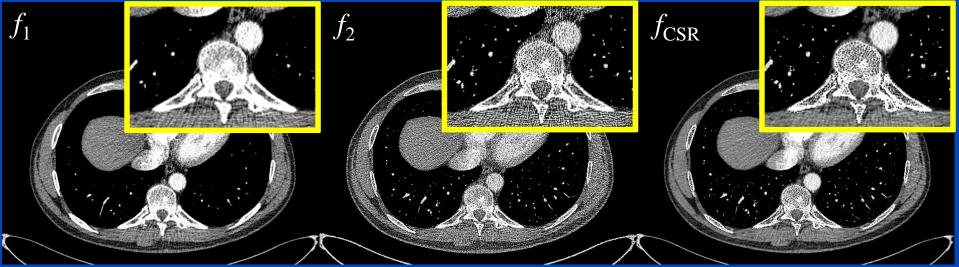
- **#basis images** • **B**
- $w_l(\mathbf{r})$ prior organ-specific weight for each voxel \mathbf{r}

Context-Sensitive (CS) Display

The CS center and width for each voxel is given by

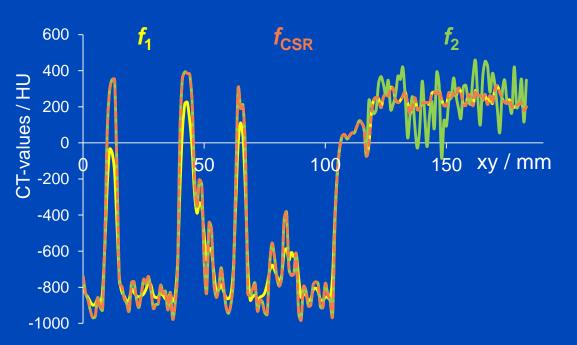
$$C_{\rm CS}(\mathbf{r}) = \sum_{l=1}^{L} w_l(\mathbf{r}) \cdot C_l,$$
$$W_{\rm CS}(\mathbf{r}) = \sum_{l=1}^{L} w_l(\mathbf{r}) \cdot W_l.$$

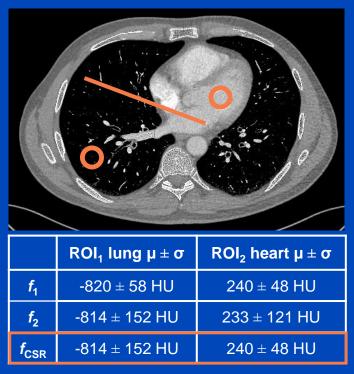
- C_l, W_l predefined center/width for label I
- Images are viewed with an adaptive sliding thin slab (STS) technique.
 - STS mean intensity projection in e.g. soft tissue
 - STS maximum intensity projection (MIP) in e.g. lung



CS Reconstruction

standard low resolution image (smooth kernel D30f)


standard high resolution image (sharp kernel B70f)


resolution-mixed image (high resolution in lung and bone, low noise in soft tissue)

CS Reconstruction

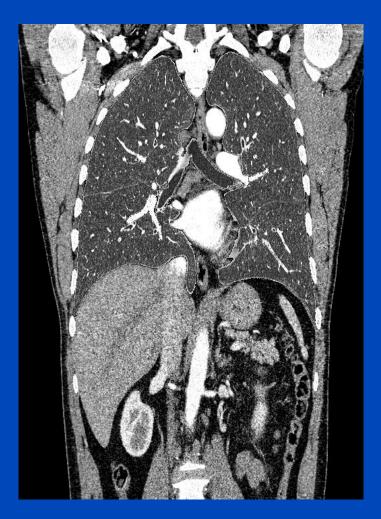
✓ Increased spatial resolution in bone and lung
✓ Decreased noise level in soft tissue

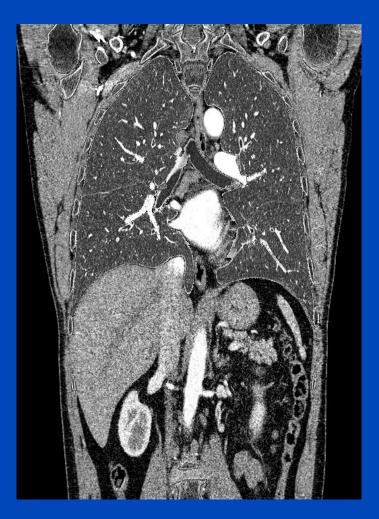
CS Reconstruction

abdomen window C/W = 40 / 300 HU

lung window C/W = -600/1200 HU bone window C/W = 450/1500 HU

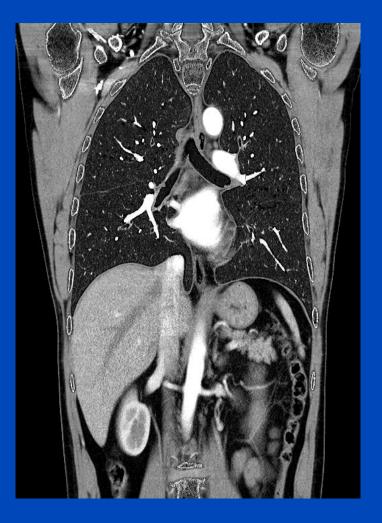
→ Need of a context-sensitive display approach!



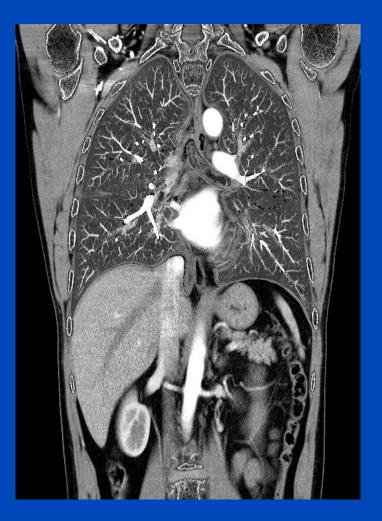




CS Display Soft Blending


- Varying σ during the Gaussian smoothing result in different blending widths w_l(r)
- We use 3 mm blending
 - Good compromise between hard transitions and over smoothing

CS Display Sliding Thin Slab


- STS mean in soft tissue (5 mm)
 - Less noise in soft tissue

CS Display Sliding Thin Slab

- STS MIP in lung (10 mm)
 - Better visualization of lung vessels

Context-Sensitive Dual Energy

• Simultaneous DE evaluation with commonly used applications

		-100 HU	Bone marrow	100 HU
		0 mg/mL	lodine overlay	10 mg/mL
		0 mg/mL	Lung PBV	6 mg/mL
Calcium-oxalate-stone	RAS	RU		
Uric acid-stone				/

Conclusions

- Method strongly depends on the segmentation accuracy
 - Still needs improvement
- Context-sensitive reconstruction
 - Combines mutually exclusive image properties
 - » High spatial resolution in bone and lung
 - » Low noise in soft tissue
- Context-sensitive display
 - Able to present significantly more information to the reader simultaneously
 - Dealing with multiple image stacks may be no longer necessary

<u>Outlook</u>

- Development of GUI for CS reconstruction and display
- Method readily extendable to multi energy data as well as to other modalities

Thank You!

This study was supported by the Deutsche Forschungsgemeinschaft (DFG) under grant KA 1678/20-1, LE 2763/2-1 and MA 4898/5-1.

This presentation will soon be available at www.dkfz.de/ct.

Job opportunities through DKFZ's international PhD or Postdoctoral Fellowship programs (www.dkfz.de), or directly through Marc Kachelriess (marc.kachelriess@dkfz.de).

Parts of the reconstruction software were provided by RayConStruct[®] GmbH, Nürnberg, Germany.

