Scatter Correction Methods in Dimensional CT

<u>Matthias Baer</u>^{1,2}, Michael Hammer³, Michael Knaup¹, Ingomar Schmidt³, Ralf Christoph³, and Marc Kachelrieß^{1,2}

¹Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Germany ²German Cancer Research Center (DKFZ), Heidelberg, Germany ³Werth Messtechnik GmbH, Gießen, Germany

Scatter Artifacts in CT Images

 Standard reconstruction algorithms for CT imaging rely on the assumption that the (primary) intensity I_p measured behind an object of thickness d is given by

$$I_{\rm p} = I_0 \, e^{-\mu \cdot d}$$

 $I_{\rm p}$: Primary intensity, μ : Linear attenuation coefficient, I_0 unattenuated intensity

Scattered radiation violates this assumption which leads to artifacts in reconstructed CT images

$$I_{\rm ps} = I_0 \, e^{-\mu \cdot d} + I_{\rm s}$$

Intensity of scattered radiation

 $l_{\rm s}$: Intensity of scattered radiation

 Reconstructed Ip
 Reconstructed Ips
 Reconstructed Ips
 Reconstructed Ips

 Image: Simulation
 Image: Simulation
 Image: Simulation
 Image: Simulation
 Image: Simulation

Aim of this Study

- Improve image quality in case of strong scatter artifacts
- Simulation study to evaluate different approaches to reduce scatter artifacts in dimensional computed tomography
- Scatter correction and reduction methods
 - Monte Carlo-based scatter correction
 - Scatter reduction by the usage of an anti-scatter grid
 - Scatter reduction by the using the slit scan technique
- The focus was to increase image quality. A detailed metrological analysis of the correction methods was not within the scope of this study.

Simulation Setup

Optical or tactile sensor

Motor block phantom, material: Aluminum, $\rho_{Al} = 0.002699 \text{ g/mm}^3$.

- Simulations were done for a typical coordinate measurement machine with CT sensor.
- All simulations with a polychromatic source spectrum at 450 kV.
- Scatter simulation was done with the Monte Carlo method.

Monte Carlo Scatter Simulation

- Simulation of physical correct photon paths through the object in order to generate realistic estimates of the scatter intensities measured at the detector.
- Considered physical effects
 - Photo effect:
 Absorption of photons by interaction with electrons.
 - Compton scattering: Scattering of photons on electrons, photons change their flight direction, energy is partially transferred to electrons.
 - Rayleigh scattering: Scattering of photons on electrons, energy of photons is conserved, only flight direction changes.
- Complex computations.
- Acceleration can be achieved for example by combination with analytical models*.
- Important: Object model is needed.

*Baer, M. and Kachelrieß, M., Hybrid scatter correction for CT imaging, Phys. Med. Biol. in press.

Source

Monte Carlo-based Scatter Correction

 Based on an initial guess of the material and density distribution within the object, a so-called mask image, an estimate of the scatter fraction in measured intensities is calculated which is then used to correct measured intensities for scatter.

Monte Carlo-based Scatter Correction

- If the mask is created by segmentation of an initial reconstruction from uncorrected intensities the accuracy of the mask image may be degraded by the presence of scatter artifacts.
- We here propose to use prior information about the object that may come for example from a CAD model to generate the mask image.

For measurements errors in the prior-based mask may be by far lower. Multisensor coordinate measuring machines can be used to enhance the registration between the prior-based mask and the CT reconstruction.

Anti-Scatter Grid

Basic concept of anti-scatter grids is that the acceptance angle ϕ for a detector pixels is restricted.

The anti-scatter gird was modeled as an ideal grid. Photons with an incidence angle larger than ϕ are absorbed completely by the grid.

Scatter artifact reduction in dependency on the grid ratio r was investigated for typical grid ratios (r=5 and r=25).

Height of grid lamellae hDistance between grid lamellae dGrid ratio $r = \frac{h}{d}$ Acceptance angle $\varphi = 0.5 \pi - \arctan r$

Using an anti-scatter grid yields a strong increase in image quality. For a grid ratio of 25, almost perfect images are obtained.

Slit Scan

Scatter artifacts decrease with decreasing detector illumination.

Comparison

Summary and Conclusion

	Pro	Con
Monte Carlo	 Good scatter artifact reduction No additional hardware Full 3D volume can be measured and corrected with a single scan 	 Complex computation Scan parameters and physical object properties are needed (e.g. source spectrum and object geometry) Registration of prior model and CT reconstruction (can be enhanced when using a multi sensor coordinate measuring machine)
Anti-Scatter Grid	 Good scatter artifact reduction Full 3D volume can be measured and corrected with a single scan 	 Additional hardware needed Special grids for each scan geometry Scatter reduction potential might be decreased by physical grid properties
Slit Scan	 Good scatter artifact reduction 	•Long scan times for full 3D volumes might prohibit routine use, several scans must be done to achieve full volume coverage

To our belief the anti-scatter grid and the Monte Carlo-based method offer the best potential both in terms of scatter reduction and practical applicability. A combination of both methods might be the best choice.

Thank You!

This project was funded by the AiF grant KF2301004UW1.

Parts of the reconstruction software were provided by RayConStruct[®] GmbH, Nürnberg, Germany.

