Large Volume Data Acquisition for Intraoperative Imaging with Mobile C-Arm CT Systems

Jan Kuntz¹, Michael Knaup¹, Christof Fleischmann², and <u>Marc Kachelrieß¹</u>

¹German Cancer Research Center (DKFZ), Heidelberg, Germany ²Ziehm Imaging GmbH, Nürnberg, Germany

DEUTSCHES KREBSFORSCHUNGSZENTRUM IN DER HELMHOLTZ-GEMEINSCHAFT

Typical OR Situation

The compactness of C-arm systems is of particular importance when complex interventions are carried out and many other medical devices are in the OR.

C-Arm Designs

Vendor A

. . . .

Vendor Z

Mobile C-arm systems should be small and compact to ensure flexible use in the operation room. From this point-of-view a non-isocentric design with rotation range of less than 180° is optimal.

Rotate-Plus-Shift¹ (RPS) Trajectory

¹J. Kuntz, L. Ritschl, C. Fleischmann, M. Knaup, and M. Kachelrieß. The Rotate-Plus-Shift C-Arm Trajectory (Parts I and II). MedPhys 2016 in press.

• To increase the FOM acquired with mobile C-arm CT systems using a shifted detector option.

SDRPS Trajectory

 Combining the shifted detector (SD) technology with the RPS trajectory yields the new shifted detector rotate-plus-shift (SDRPS) trajectory.

SDRPS Rawdata Weights

- Determine coverage in virtual parallel sinogram¹
- Find redundancies in virtual parallel geometry¹ ightarrow
- Calculate redundancy weights¹ that ensures that •
 - the all redundant rays sum up to 1: $\sum_{h} w \left(\vartheta + h \pi, (-1)^{h} \xi \right) = 1$ $\forall \vartheta, \xi$
 - all transitions zones in the weight sinogram are smooth

Detector Channel

Detector Channel

¹M. Knaup, J. Kuntz, S. Sawall, and M. Kachelrieß. A General Projection Weight for Feldkamp-Type Cone-Beam Image Reconstruction from Arbitrary CT Scan Trajectories. Proceedings of the Fully 3D 2015

Reconstructions of RPS and SDRPS Simulations

 The proposed SDRPS trajectory increases the FOM significantly, which is advantageous for spinal and thoracic surgery and many other applications.

Reconstructions of RPS and SDRPS Simulations

 The proposed SDRPS trajectory increases the FOM significantly, which is advantageous for spinal and thoracic surgery and many other applications.

Reconstructions of SDRPS Simulations

- Axial slices do not suffer from limited angle artifacts
- Cone-beam artifacts are similar to those of conventional short scans.

Conclusions

- The SDRPS trajectory can extend the FOM and provide intraoperative 3D images of a larger anatomical area.
- Image reconstruction is exact in the midplane.
- The trajectory can be readily implemented in fully motorized C-arm CT systems.

Thank You!

The 4th International Conference on Image Formation in X-Ray Computed Tomography

> July 18 – July 22, 2016, Bamberg, Germany www.ct-meeting.org

Conference Chair Marc Kachelrieß, German Cancer Research Center (DKFZ), Heidelberg, Germany

This presentation will soon be available at www.dkfz.de/ct. The study was supported by the Deutsche Forschungsgemeinschaft (DFG) under grant No. KA-1678/11-1. Parts of the reconstruction software RayConStruct-IR were provided by RayConStruct[®] GmbH, Nürnberg, Germany.