Shifted Detector Short Scan Reconstruction for the Rotate-Plus-Shift Trajectories

Jan Kuntz¹, Christof Fleischmann², Michael Knaup¹, and Marc Kachelrieß¹

¹German Cancer Research Center (DKFZ), Heidelberg, Germany ²Ziehm Imaging GmbH, Nürnberg, Germany

DEUTSCHES KREBSFORSCHUNGSZENTRUM IN DER HELMHOLTZ-GEMEINSCHAFT

Typical OR Situation

The compactness of C-arm systems is of particular importance when complex interventions are carried out and many other medical devices are in the OR.

C-Arm Designs

Mobile C-arm systems should be small and compact to ensure flexible use in the operation room. From this point-of-view a non-isocentric design with rotation range of less than 180° is optimal.

C-Arm Designs

Vendor A

. . . .

Vendor Z

Mobile C-arm systems should be small and compact to ensure flexible use in the operation room. From this point-of-view a non-isocentric design with rotation range of less than 180° is optimal.

Rotate-Plus-Shift (RPS) Trajectory

Rotate-Plus-Shift¹ (RPS) Trajectory

¹J. Kuntz, L. Ritschl, C. Fleischmann, M. Knaup, and M. Kachelrieß. The Rotate-Plus-Shift C-Arm Trajectory (Parts I and II). MedPhys 2016 in press.

• To increase the FOM acquired with mobile C-arm CT systems using a shifted detector option.

SDRPS Trajectory

Combining the shifted detector (SD) technology with the RPS trajectory yields the new shifted detector rotate-plusshift (SDRPS) trajectory.

180° data completeness in parallel sinogram

Redundancies in SDRPS Scans

- The practical implementation of the SDRPS scan leads to up to fourfold redundancies in small part of the sinogram
- Conventional redundancy weights like the Parker weight or the overscan weight are not applicable to these rawdata
- Therefore a generalized approach was developed¹

¹M. Knaup, J. Kuntz, S. Sawall, and M. Kachelrieß. A General Projection Weight for Feldkamp-Type Cone-Beam Image Reconstruction from Arbitrary CT Scan Trajectories. Proceedings of the Fully 3D 2015

D)E(G

ziehmimaging

Step 1: Counting Redundancies

DFG

ziehmimaging

- For each ray (ϑ, ξ) we count the number of fan projections covering this ray.
- This number of fan projections is called the redundancy $R(\vartheta, \xi)$ of this ray.
- The list of fan projections

 is mapped to a list of virtual
 half rotations h such that
 adjacent rays in the extended
 parallel sinogram are covered
 by adjacent fan projections.

Step 2: Calculating the Weights

- To account correctly for the redundancies, the weights must fulfill the constraint $\sum_{h=0}^{H-1} w \left(\vartheta + h\pi, (-1)^h \xi\right) = 1 \quad \forall \vartheta, \xi$
- An obvious choice would be $w \left(\vartheta + h\pi, (-1)^h \xi\right) =$ $= \begin{cases} R(\vartheta, \xi)^{-1} & \text{if ray is measured.} \\ 0 & \text{if ray is not measured.} \end{cases}$

Step 2: Calculating the Weights

 However, this would result in non-continuous weights which produce unwanted streak artifacts in the final image due to the discreteness of the sampling.

Step 2: Smoothing the Weights

h=0

Therefore, we must smooth the weights under the constraint $\frac{H-1}{\sum w (\vartheta + h\pi, (-1)^h \xi)} = 1 \quad \forall \vartheta, \xi$

Step 3: Smoothing the Weights

We smooth the weights by minimizing the following cost function:

$$C = \sum_{\vartheta,\xi} \left[A_{\vartheta,\xi} + \beta B_{\vartheta,\xi} + \lambda_{\vartheta,\xi} \left(1 - \sum_{h=0}^{H-1} w \left(\vartheta + h\pi, (-1)^h \xi \right) \right) \right]$$
with

$$A_{\vartheta,\xi} = \sum_{h=0}^{H-1} \left[\left(\frac{\partial}{\partial \vartheta} w \left(\vartheta + h\pi, (-1)^h \xi \right) \right)^2 + \left(\frac{\partial}{\partial \xi} w \left(\vartheta + h\pi, (-1)^h \xi \right) \right)^2 \right]$$

(minimizes 1st derivatives)

$$B_{\vartheta,\xi} = \sum_{h=0}^{H-1} \left[\left(\frac{\partial^2}{\partial \vartheta^2} \, w \left(\vartheta + h\pi, (-1)^h \, \xi \right) \right)^2 + \left(\frac{\partial^2}{\partial \xi^2} \, w \left(\vartheta + h\pi, (-1)^h \, \xi \right) \right)^2 \right]$$

(minimizes 2nd derivatives)

The cost function will be minimized by a gradient descent approach with respect to the following variables:

- All weights $w(\vartheta, \xi)$ with redundancy $R(\vartheta, \xi) > 1$.
- The Lagrange multipliers $\lambda_{\vartheta,\xi}$ which enforce the constraint.

Rawdata Weighting for the SDRPS Trajectory

- 1. Calculation of coverage in virtual parallel geometry
- 2. Calculation of redundancies in virtual parallel geometry
- 3. Calculation of redundancy weight that ensures that
 - the all redundant rays sum up to 1
 - all transitions zones in the weight sinogram are smooth

SDRPS Trajectories for Mobile C-Arm CT systems

- In intraoperative C-arm CT the regions of interest are often oval or elliptical
- Prevention of collisions with patient bed or OR equipment
- Trajectory has to be within the technical limitations of the C-arm system

SDRPS Trajectories for Mobile C-Arm CT systems

Reconstructions of RPS and SDRPS Simulations

 The proposed SDRPS trajectory increases the FOM significantly, which is advantageous for spinal and thoracic surgery and many other applications.

Reconstructions of RPS and SDRPS Simulations

 The proposed SDRPS trajectory increases the FOM significantly, which is advantageous for spinal and thoracic surgery and many other applications.

Reconstructions of SDRPS Simulations

- Axial slices do not suffer from limited angle artifacts
- Cone-beam artifacts are similar to those of conventional short scans.

Conclusions

- The SDRPS trajectory can extend the FOM and provide intraoperative 3D images of a larger anatomical area.
- Image reconstruction is exact in the midplane.
- The trajectory can be readily implemented in fully motorized C-arm CT systems.

Thank You!

The 4th International Conference on Image Formation in X-Ray Computed Tomography

> July 18 – July 22, 2016, Bamberg, Germany www.ct-meeting.org

Conference Chair Marc Kachelrieß, German Cancer Research Center (DKFZ), Heidelberg, Germany

This presentation will soon be available at www.dkfz.de/ct. The study was supported by the Deutsche Forschungsgemeinschaft (DFG) under grant No. KA-1678/11-1. Parts of the reconstruction software RayConStruct-IR were provided by RayConStruct[®] GmbH, Nürnberg, Germany.