
Spectral Artifacts in Medical CT 
and Reduction Strategies

Marc Kachelrieß

German Cancer Research Center (DKFZ)

Heidelberg, Germany

www.dkfz.de/ct



4

GE Revolution CT

Toshiba Aquilion ONE Vision

Philips IQon Spectral CT

Siemens Somatom Force
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What does CT Measure?

• X-rays are generated in an x-ray tube.

• The polychromatic radiation is attenuated
in the patient. X-ray photon attenuation is
dominated by the photo and the Compton effect.

• Detectors measure the x-ray intensity after the rays
have passed through the patient along several lines L.

• The log intensity is the so-called x-ray transform:

• Often, the follwing monochromatic approximation is used:



6

Anode

Bow-tie filter

Wedge filter

Detector

Additional filters

e-

Figure not drawn to scale. Order of prefiltration may differ from scanner to scanner.
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Basic Parameters
(best-of values typical for modern scanners)

• In-plane resolution: 0.4 … 0.7 mm

• Nominal slice thickness: S = 0.5 … 1.5 mm

• Effective slice thickness: Seff = 0.5 … 10 mm

• Tube (max. values): 120 kW, 150 kV, 1300 mA

• Effective tube current: mAseff = 10 mAs … 1000 mAs

• Rotation time: Trot = 0.25 … 0.5 s

• Simultaneously acquired slices: M = 16 … 320

• Table increment per rotation: d = 1 … 183 mm

• Pitch value: p = 0.1 … 1.5 (up to 3.2 for DSCT)

• Scan speed: up to 73 cm/s

• Temporal resolution: 50 … 250 ms
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A directly cooled tube: The Siemens Vectron tube
(Photo courtesy by Siemens)
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Gd2O2S
7.44 g/cm3

Photo courtesy of Siemens 
Healthcare, Forchheim, Germany

Detector Technology



C = -600 HU, W = 1200 HUC = -600 HU, W = 1200 HU

C = 200 HU, W = 300 HUC = 100 HU, W = 500 HUC = 100 HU, W = 500 HU
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No water precorrection
(only accessible in service mode)

With water precorrection
(air = -1000 HU, water = 0 HU)

Images of a 32 cm Water Phantom
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First Order 
Beam Hardening Correction
(Cupping Correction, Water Precorrection)

• Assumes the object to consist of only one energy 
dependency (one material)

• Often requires to know the spectral properties of all 
components involved

– X-ray spectra

– Pre patient filters

– Attenuation properties of the assumed single material or shape and 
position of a calibration object

– Absorption properties of detector
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M. Kachelrieß, K. Sourbelle, and W.A. Kalender, “Empirical cupping correction: A first-order raw data 
precorrection for cone-beam computed tomography,” Med. Phys. 33(5):1269-1274, May 2006.
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Motivation

• Measured projection value q
– Detected spectrum w(L, E)

– Scatter

– Normalization

• Ideal monochromatic projection value p

∫−
−= ∫

E)(dL
eELwdELq

, 
 ),( ln)(

rµ

∫= ),( )( 0EdLLp rµ

Determine a function P such that 
p=P(L, q) corrects for the cupping.

L

q
L

p



15

Analytical Cupping Correction

• Know the detected spectrum

• Assume the object to be decomposed as 

such that

• Invert to get p
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Empirical Cupping Correction (ECC)

• Series expansion of the
precorrection function

• Go to image domain by
reconstructing qn

• Find coefficients from
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M. Kachelrieß, K. Sourbelle, and W.A. Kalender, “Empirical cupping correction: A first-order raw data 
precorrection for cone-beam computed tomography,” Med. Phys. 33(5):1269-1274, May 2006.
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ECC Template Image

Original image
f1(r)

Template image
t(r)

Weight image
w(r)

water
phantom
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segment and
specify CT-values CT = 0 HU

CT = -1000 HU

M. Kachelrieß, K. Sourbelle, and W.A. Kalender, “Empirical cupping correction: A first-order raw data 
precorrection for cone-beam computed tomography,” Med. Phys. 33(5):1269-1274, May 2006.
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Results: Water Phantom

Orig (Mean±4Sigma) ECC (Mean±4Sigma)

M. Kachelrieß, K. Sourbelle, and W.A. Kalender, “Empirical cupping correction: A first-order raw data 
precorrection for cone-beam computed tomography,” Med. Phys. 33(5):1269-1274, May 2006.
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Results: Mouse Scan
No correction (Mean±4Sigma)

ECC (Mean±4Sigma)

M. Kachelrieß, K. Sourbelle, and W.A. Kalender, “Empirical cupping correction: A first-order raw data 
precorrection for cone-beam computed tomography,” Med. Phys. 33(5):1269-1274, May 2006.
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Std BHC
(0/500)(0/500)

(0/500)

CT Metrology

M. Kachelrieß, K. Sourbelle, and W.A. Kalender, “Empirical cupping correction: A first-order raw data 
precorrection for cone-beam computed tomography,” Med. Phys. 33(5):1269-1274, May 2006.
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Std BHC
(1000/200)(1000/200)

(0/500)

CT Metrology

M. Kachelrieß, K. Sourbelle, and W.A. Kalender, “Empirical cupping correction: A first-order raw data 
precorrection for cone-beam computed tomography,” Med. Phys. 33(5):1269-1274, May 2006.
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Higher Order 
Beam Hardening Correction

• Always requires to add a priori knowledge about the 
object

– Segmentation into regions of constant energy dependencies

• Often requires to know the spectral properties of all 
components involved

– X-ray spectra

– Pre patient filters

– Attenuation properties of materials abundant in humans

– Absorption properties of detector
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One Material
(needed for Water Precorrection)
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Assumption:

All clinical CT images are corrected wrt a single material.

energy dependence spatial dependence

M. Kachelrieß, and W.A. Kalender, “Improving PET/CT attenuation correction with iterative CT beam 
hardening correction,” IEEE Medical Imaging Conference Program, M04-5, October 2005.
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Today’s scaling algorithms, in contrast, simply use                                 . 

Many Materials
(required for iterative BHC)
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For PET/CT attenuation correction we need to recover              for all 

materials present. Then we can convert to E0 = 511 keV as
)(rig

)()()()(),( 000 rgψrr ⋅==∑ EgEE
i

iiψµ

sum over different materials

)()()( rrr ii sfg =

M. Kachelrieß, and W.A. Kalender, “Improving PET/CT attenuation correction with iterative CT beam 
hardening correction,” IEEE Medical Imaging Conference Program, M04-5, October 2005.
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Y. Kyriakou, E. Meyer, D. Prell, and M. Kachelrieß, “Empirical beam hardening 
correction (EBHC) for CT,” Med. Phys. 37(10):5179-5187, October 2010.
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Empirical Beam Hardening 
Correction (EBHC)

• Requirements/Objectives
– Empirical correction of higher order beam hardening 

effects

– No assumptions on attenuation coefficients, spectra, 
detector responses or other properties of the scanner

– Image-based and system-independent method

• Overview of correction steps
– Forward project segmented bone volume to obtain 

artificial rawdata

– Pass the artificial rawdata through basis functions

– Reconstruct the basis functions

– Linearly combine the correction volumes and the 
original volume using flatness maximization
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Y. Kyriakou, E. Meyer, D. Prell, and M. Kachelrieß, “Empirical beam hardening 
correction (EBHC) for CT,” Med. Phys. 37(10):5179-5187, October 2010.
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EBHC Details
• Decomposition into an effective water-equivalent 

density         of the object and into an effective energy 
dependence of a second material, e.g. bone

• Assuming water-precorrected data gives

where and are the line integrals through                                 
and 
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Y. Kyriakou, E. Meyer, D. Prell, and M. Kachelrieß, “Empirical beam hardening 
correction (EBHC) for CT,” Med. Phys. 37(10):5179-5187, October 2010.
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EBHC Details

• We solve for           using a series expansion

• Empirically find c11 and c02 to correct initial image by flatness 
maximization
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Y. Kyriakou, E. Meyer, D. Prell, and M. Kachelrieß, “Empirical beam hardening 
correction (EBHC) for CT,” Med. Phys. 37(10):5179-5187, October 2010.
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Hip 1

Al
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HA800

Iodine

U=140 kV U= 120kV U = 120kV U= 120kV U=120kV

C0W200 / C0W100 C0W1000 / C0W100C0W200 / C0W100C0W400 / C0W100

HA200

C0W200 / C0W100
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EBHC for Clinical CT

Y. Kyriakou, E. Meyer, D. Prell, and M. Kachelrieß, “Empirical beam hardening 
correction (EBHC) for CT,” Med. Phys. 37(10):5179-5187, October 2010.
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EBHC for Micro CT

C50W800 C0W1000 C0W1000

Rat #1 Rat #2

Y. Kyriakou, E. Meyer, D. Prell, and M. Kachelrieß, “Empirical beam hardening 
correction (EBHC) for CT,” Med. Phys. 37(10):5179-5187, October 2010.
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EBHC: Clinical CT vs. FD-CT

Clinical CT Clinical CT FD-CTFD-CT
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Y. Kyriakou, E. Meyer, D. Prell, and M. Kachelrieß, “Empirical beam hardening 
correction (EBHC) for CT,” Med. Phys. 37(10):5179-5187, October 2010.
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Conclusions on Empirical Cupping 
and Beam Hardening Corrections

• X-ray spectra need not necessarily be known

• Scatter is implicitly accounted for as well

• ECC and EBHC are robust methods that work well in 
clinical CT and that also have been applied to some 
industrial situations.
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Scatter Correction

• Remove or prevent scattered radiation 
(anti scatter grid, slit scan, large detector distance, …)

• Compute scatter to subtract it 
(convolution-based, Monte Carlo-based, …)

• Measure scatter distribution and subtract it
(collimator shadow, beam blockers, 
primary modulators, …)

• Literature:

• E.-P. Rührnschopf and K. Klingenbeck, “A general framework and review of scatter correction 
methods in x–ray cone–beam computerized tomography. Part 1: Scatter compensation approaches,”  
Med. Phys., vol. 38, pp. 4296–4311, July 2011.

• E.-P. Rührnschopf and K. Klingenbeck, “A general framework and review of scatter correction 
methods in x–ray cone beam CT. Part 2: Scatter estimation approaches,” Med. Phys., vol. 38, pp. 
5186–5199, Sept. 2011.
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EBHSC: Scheme

E. Meyer, C. Maaß, M. Baer, R. Raupach, B. Schmidt, and M. Kachelrieß, “Empirical Scatter Correction 
(ESC) “, IEEE Medical Imaging Conference Record 2010:2036-2041, November 2010.
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EBHSC: Results
EBHSC imageUncorrected image

Patient with bilateral hip prosthesis,  Siemens Somatom Definition (C=100/W=1000).

E. Meyer, C. Maaß, M. Baer, R. Raupach, B. Schmidt, and M. Kachelrieß, “Empirical Scatter Correction 
(ESC) “, IEEE Medical Imaging Conference Record 2010:2036-2041, November 2010.
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Primary Modulation-based 
Scatter Estimation (PMSE)

• Idea: Insert a high frequency 
modulation pattern between 
the source and the object 
scanned

• Rationale: The primary 
intensity is modulated. The 
scatter is created in the 
object and only consists of 
low frequency components.

• Method: Estimate low 
frequency primary without 
scatter by Fourier filtering 
techniques  

L. Zhu, R. N. Bennett, and R. Fahrig, “Scatter correction method for x–ray CT using primary modulation: 
Theory and preliminary results,” IEEE Transactions on Medical Imaging, vol. 25, pp. 1573–1587, Dec. 2006.

Shifted primary

Scatter + primary
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Primary Modulation-based 
Scatter Estimation (PMSE1)

• Advantages: 
– Non-destructive measurement of the scatter distribution

– Works with high accuracy on laboratory setups

– Corrected projection data can be used for projective imaging 
(fluoroscopy) or for tomographic reconstruction

• Drawbacks:
– Sensitive to non-linearities due to polychromaticity of x-rays. Ring 

artifacts are introduced1. Can be resolved using ECCP2. 

– Requires exact rectangular pattern on the detector. Very sensitive 
to non-idealities of the projected modulation pattern (blurring, 
distortion, manufacturing errors of the modulator). Can be resolved 
using iPMSE3.

1H. Gao, L. Zhu, and R. Fahrig. Modulator design for x-ray scatter correction using primary modulation: 
Material selection. Med. Phys. 37:4029–4037, 2010.

2R. Grimmer, R. Fahrig, W. Hinshaw, H. Gao, and M. Kachelrieß. Empirical cupping correction for CT 
scanners with primary modulation (ECCP). Med. Phys. 39(2):825-831, February 2012.

3L. Ritschl, R. Fahrig, M. Knaup, J. Maier, and M. Kachelrieß, Robust primary modulation-based scatter 
estimation for cone-beam CT. Med. Phys. 42(1):469-478, January 2015.
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Modulator

Photograph of the copper 
modulator

Projection image of the 
modulator
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Primary Modulator 
Introduces Beam Hardening

• The primary modulator introduces high frequency 
variations of the incident x-ray spectrum.

• These variations show up as ring artifacts in the 
reconstructed images1,2,3.

(0 HU, 500 HU)

Scan without modulator, 
no scatter correction

Scan with modulator, 
after PMSE correction

1Gao et al. MedPhys 37(2):934-946, 2010.     2Gao et al. Proc. SPIE 7622, 2010.     3Gao et al. MedPhys 37(8):4029-4037, 2010.
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Catphan Phantom

C = 0 HU, W = 500 HU

Measurement without
Modulator

Measurement with
Modulator

ECCP–corrected

ECCP coefficients obtained from the water phantom calibration scan.

R. Grimmer, R. Fahrig, W. Hinshaw, H. Gao, and M. Kachelrieß, “Empirical cupping correction 
for CT scanners with primary modulation (ECCP),” Med. Phys. 39(2):825-831, February 2012.
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Combined correction with
PMSE and ECCP

C = 0 HU, W = 500 HU

Measurement without
Modulator

PMSE+ECCP–corrected Slitscan without
modulator

ECCP coefficients obtained from the PMSE-corrected 
water phantom calibration scan.

R. Grimmer, R. Fahrig, W. Hinshaw, H. Gao, and M. Kachelrieß, “Empirical cupping correction 
for CT scanners with primary modulation (ECCP),” Med. Phys. 39(2):825-831, February 2012.
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Aim of iPMSE

Create a robust scatter estimation method which is 
able to estimate the scatter distribution with high 
accuracy using a modulator with an arbitrary high 
frequency pattern.

“Ideal” modulator
(projection image of a 

copper modulator)

Non-ideal modulator
(projection image of the 

erbium modulator)

L. Ritschl, R. Fahrig, M. Knaup, J. Maier, and M. Kachelrieß, “Robust primary modulation-
based scatter estimation for cone-beam CT,” Med. Phys. 42(1):469-478, January 2015.
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Modulation Process 
in the Rawdata Domain

• Measured data:

• Solving for the 
primary intensity:

• Error of primary
estimate:

Measured intensity Modulation pattern

Primary intensity

Scatter intensity

The modulation pattern remains visible 
if the scatter estimate error is not zero.

Scatter estimate error

L. Ritschl, R. Fahrig, M. Knaup, J. Maier, and M. Kachelrieß, “Robust primary modulation-
based scatter estimation for cone-beam CT,” Med. Phys. 42(1):469-478, January 2015.
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iPSME

• Subject to                      solve:

• Assumption:
In a sufficiently small and sufficiently 
large sub image the constraint can be
satisfied by assuming cs = const.

• Solution:
Solve cost function for each possible sub 
image separately.

• Finally do:

Scatter estimate

Measurement

L. Ritschl, R. Fahrig, M. Knaup, J. Maier, and M. Kachelrieß, “Robust primary modulation-
based scatter estimation for cone-beam CT,” Med. Phys. 42(1):469-478, January 2015.
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Measured Intensity

L. Ritschl, R. Fahrig, M. Knaup, J. Maier, and M. Kachelrieß, “Robust primary modulation-
based scatter estimation for cone-beam CT,” Med. Phys. 42(1):469-478, January 2015.
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iPMSE Estimation

L. Ritschl, R. Fahrig, M. Knaup, J. Maier, and M. Kachelrieß, “Robust primary modulation-
based scatter estimation for cone-beam CT,” Med. Phys. 42(1):469-478, January 2015.
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Lung Phantom Scan
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L. Ritschl, R. Fahrig, M. Knaup, J. Maier, and M. Kachelrieß, “Robust primary modulation-
based scatter estimation for cone-beam CT,” Med. Phys. 42(1):469-478, January 2015.
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Metal Artifact Reduction (MAR)

With linear interpolation (MAR1)

[1] W. A. Kalender, R. Hebel and J. 
Ebersberger, “Reduction of CT artifacts 
caused by metallic implants”,
Radiology, vol. 164, no. 2, pp. 576-577, 
August 1987.

With simple length-normalization (MAR2)

[2] J. Müller and T. M. Buzug, “Spurious 
structures created by interpolation-
based CT metal artifact reduction“, 
SPIE Medical Imaging Proc., vol. 7258, 
no. 1, pp. 1Y1-1Y8, March 2009.

Our generalized normalization (NMAR)

[3] E. Meyer, F. Bergner, R. Raupach, and 
M. Kachelrieß. “Normalized metal 
artifact reduction (NMAR) in computed 
tomography”, IEEE Medical Imaging 
Conference Record, M09-206, October 
2009.
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Corrected imageUncorrected image

MAR1

Thresholding

Input

Output

Original sinogram

Metal image

Metal projections Corrected sinogram

Interpolation

Meyer, Raupach, Lell, Schmidt, and Kachelrieß, “Normalized metal artifact reduction 
(NMAR) in computed tomography”, Med. Phys. 37(10):5482-5493, 2012.
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Corrected image

Normalized sinogram

Uncorrected image

Normalized MAR (NMAR)

Thresholding

Normalization Denormalization

Interpolation

Input

Output

Original sinogram

Metal image Ternary image

Metal projections Sinogram of tern. im. Corrected sinogram

Interpol. & norm.

Meyer, Raupach, Lell, Schmidt, and Kachelrieß, “Normalized metal artifact reduction 
(NMAR) in computed tomography”, Med. Phys. 37(10):5482-5493, 2012.



85

Corrected imageUncorrected image

MAR1

Thresholding

Interpolation

Output

Original sinogram

Metal image

Metal projections Corrected sinogram

Input

Meyer, Raupach, Lell, Schmidt, and Kachelrieß, “Normalized metal artifact reduction 
(NMAR) in computed tomography”, Med. Phys. 37(10):5482-5493, 2012.
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Corrected image

Normalized sinogram

Uncorrected image

Normalized MAR (NMAR)

Thresholding

Normalization Denormalization

Interpolation

Input

Output

Original sinogram

Metal image Ternary image

Metal projections Sinogram of tern. im. Corrected sinogram

Interpol. & norm.

Meyer, Raupach, Lell, Schmidt, and Kachelrieß, “Normalized metal artifact reduction 
(NMAR) in computed tomography”, Med. Phys. 37(10):5482-5493, 2012.
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Results and Comparison:
Patient Data

Patient with hip implants, Sensation 16, 140 kV, (C=0/W=500)

Uncorrected MAR1

MAR2 NMAR

Meyer, Raupach, Lell, Schmidt, and Kachelrieß, “Normalized metal artifact reduction 
(NMAR) in computed tomography”, Med. Phys. 37(10):5482-5493, 2012.
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Results and Comparison:
Patient Data

Uncorrected MAR1

MAR2 NMAR

Patient with hip implants, Sensation 16, 140 kV, (C=500/W=1500)

Meyer, Raupach, Lell, Schmidt, and Kachelrieß, “Normalized metal artifact reduction 
(NMAR) in computed tomography”, Med. Phys. 37(10):5482-5493, 2012.
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Results and Comparison:
Patient Data

Uncorrected MAR1 MAR2 NMAR

Patient dental fillings, slice 110, Somatom Definition Flash, pitch 0.9. Top 

and middle row: (C=100/W=750). Bottom row: (C=1000/W=4000)

Meyer, Raupach, Lell, Schmidt, and Kachelrieß, “Normalized metal artifact reduction 
(NMAR) in computed tomography”, Med. Phys. 37(10):5482-5493, 2012.
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NMAR: Results
NMARUncorrected

Bone removal (with scanner software), (C=40/W=500).

Meyer, Raupach, Lell, Schmidt, and Kachelrieß, “Normalized metal artifact reduction 
(NMAR) in computed tomography”, Med. Phys. 37(10):5482-5493, 2012.
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Patient with hip implant, Somatom Definition Flash, pitch 2.7. 
Top and middle row: (C=0/W=500). Bottom row: (C=500/W=1500).

Uncorrected MAR1 NMAR

NMAR: Results

Meyer, Raupach, Lell, Schmidt, and Kachelrieß, “Normalized metal artifact reduction 
(NMAR) in computed tomography”, Med. Phys. 37(10):5482-5493, 2012.
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FSMAR: Scheme

NMAR

Highpass-filtered Lowpass-filteredWeight Highpass-filtered

Uncorrected

Result

Metal

Weighted 
sum

Meyer, Raupach, Lell, Schmidt, and Kachelrieß, “Frequency split metal artifact reduction 
(FSMAR) in computed tomography”, Med. Phys. 39(4):1904-1916, 2012.
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Uncorrected MAR1 NMAR

Patient with spine fixation, Somatom Definition, (C=100/W=1000).

FSMAR: Results

Meyer, Raupach, Lell, Schmidt, and Kachelrieß, “Frequency split metal artifact reduction 
(FSMAR) in computed tomography”, Med. Phys. 39(4):1904-1916, 2012.
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Patient with spine fixation, Somatom Definition, (C=100/W=1000).

Uncorrected MAR1 NMAR

FSMAR: Results

Meyer, Raupach, Lell, Schmidt, and Kachelrieß, “Frequency split metal artifact reduction 
(FSMAR) in computed tomography”, Med. Phys. 39(4):1904-1916, 2012.
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Patient with bilateral hip prosthesis, Somatom Definition Flash, (C=40/W=500).

FSMAR: Results

Uncorrected MAR1 NMAR

W
ith

o
u
t F

S
W

ith
 F

S

Meyer, Raupach, Lell, Schmidt, and Kachelrieß, “Frequency split metal artifact reduction 
(FSMAR) in computed tomography”, Med. Phys. 39(4):1904-1916, 2012.
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Patient with bilateral hip prosthesis, Somatom Definition Flash, (C=40/W=500).

FSMAR: Results

Uncorrected MAR1 NMAR
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Meyer, Raupach, Lell, Schmidt, and Kachelrieß, “Frequency split metal artifact reduction 
(FSMAR) in computed tomography”, Med. Phys. 39(4):1904-1916, 2012.
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DECT Technology

• In the clinic:
– Multiple scans at different spectra mid-range

– Dual source CT (DSCT), generations 2, and 3 high-end

– Fast tube voltage switching high-end

– Dual layer sandwich detectors high-end

– Split filter mid-range

• First prototypes:
– Photon counting detectors (two or more energy bins) high-end?
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DECT Technology

• DECT approaches in the clinic:
– Dual source DECT (Siemens)

Siemens Somatom Force

Tin prefilter
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DECT Technology

• DECT approaches in the clinic:
– Dual source DECT (Siemens)

– Fast tube voltage switching (GE)

GE Discovery CT750 HD

Tube voltage 
alternating 

>1000 times per 
second.
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DECT Technology

• DECT approaches in the clinic:
– Dual source DECT (Siemens)

– Fast tube voltage switching (GE)

GE Discovery CT750 HD

Tube voltage 
alternating 

>1000 times per 
second.
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DECT Technology

• DECT approaches in the clinic:
– Dual source DECT (Siemens)

– Fast tube voltage switching (GE)

– Dual layer (sandwich) detector (Philips)

Philips IQon
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DECT Technology

• DECT approaches in the clinic:
– Dual source DECT (Siemens)

– Fast tube voltage switching (GE)

– Dual layer (sandwich) detector (Philips)

– Split filter (Siemens)

Siemens Definition Edge TwinBeam
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DECT Technology

• DECT approaches in the clinic:
– Dual source DECT (Siemens)

– Fast tube voltage switching (GE)

– Dual layer (sandwich) detector (Philips)

– Split filter (Siemens)

• First prototype systems
– Photon counting detector, multiple energy bins

Siemens

Philips

GE



Dual Energy whole body CTA: 100/140 Sn kV @ 0.6mm

Courtesy of Friedrich-Alexander University Erlangen-Nürnberg

Single DECT 
Scan

DE bone removal

Virtual non-contrast 
and Iodine image

Examples
(Slide Courtesy of Siemens Healthcare)



DECT Today: Widely Available via DSCT
(Slide Courtesy of Siemens Healthcare)

� “Spectroscopy“: more specific tissue characterization
� Detection and visualization of calcium, iron, uric acid, …..

Kidney stones

Calcium-oxalate-stone

Uric acid-stone

Different 
therapy options!

Courtesy of Klinikum Großhadern, LMU München



DECT Today: Widely Available via DSCT 
(Slide Courtesy of Siemens Healthcare)

� New approach: Detection, visualization and quantification of iodine
� Visualization of perfusion defects in the lung parenchyma

Courtesy of Hopital Calmette, Lille, France

Embolus

Standard image Iodine image
Standard image +

iodine overlay
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Image-based Techniques
Mixed Image (Linear)

C/W: 500/3000 HU

Original low spectrum image Original high spectrum image

w = 0 w = 1
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Image-based Techniques
Mixed Image (Linear)

C/W: 500/3000 HU

Resulting mixed 
Image from low to 
high-energy image

w-2 10

0 1
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DECT
and Pseudo Monochromatic Imaging
Pseudo monochromatic imaging is a linear combination
of DECT fL and fH:

α(E)

2

1

0

-1

-2

-3

20 40 60 80 100 120 140 160 180

E / keV

E / keV

DECT spectra

(C/W) in HU
(40/400)

(40/400)

(40/400)

(0/800)

(0/800)

(0/800)

n

100 kV, α = 0, E = 67 keV

fL

fα

fH

140 kV, α = 1, E = 93 keV

α = 1.67, E = 221 keV

100 kV, α = 0, E = 67 keV

140 kV, α = 1, E = 93 keV

α = 1.50, E = 140 keV

L H
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Monochromatic Imaging

• Pseudo monochromatic imaging
– Image-based postprocessing

– Provided in clinical DECT scanners

• Virtual monochromatic imaging
– Rawdata-based preprocessing 

– Constraint on consistent rawdata

• True monochromatic imaging
– Would require monochromatic x-rays – not applicable here
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Series Expansion
• Series expansion of the polychromatic attenuation:

fL = f0

fα fα fα
linear nonlinear

(0/200)

(0/200)

(0/200)

(0/200)

(0/200)

(0/200)

fH = f1

f1.67

(0/200)

(0/200)

(0/200)
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pseudo monochromatic
image-based processing

virtual monochromatic
rawdata-based processing

C = 40 HU, 
W = 400 HU

fH = f1
(E = 93 keV)

maximum CNR

fL = f0
(E = 67 keV)

f1.67
(E = 221 keV)

CNR = 4.3 CNR = 3.9

CNR = 4.5 CNR = 2.7

CNR = 6.4
α = 0.61
E = 79 keV

CNR = 4.3
α = 0.21
E = 71 keV

CNR = 1.7 CNR = 1.9

works well in 
scatter-free 
situations

also reduces 
scatter 
artifacts



118C = 0 HU, W = 800 HU

z = -792 mmz = -723 mm

fL = f0
(E = 67 keV)

fH = f1
(E = 93 keV)

f1.55
(E = 154 keV)

f2.00
(E = --- keV)

α(E)
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20 40 60 80 100120140160180

E / keV

Patient Data Set – Pseudo Monochromatic Imaging
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α = 1.43,
E = 128 keV

α = 1.61, E =176 keV

Original DEMAR IMAR (FSNMAR)1
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V DEMAR
not applicable since this is 
a single energy CT scan.

1Iterative metal artifact reduction (IMAR) is the Siemens product implementation of FSNMAR.
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Conclusion

• Pseudo monochromatic imaging
– cannot completely remove metal artifacts,

– can sometimes reduce metal artifacts,

– reduces CNR if used for metal artifact reduction.

• Rawdata-based methods should be preferred.

• The additional information available in DECT 
should be used for spectral imaging rather than 
for artifact reduction.
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Image-Based DECT: Beyond 
Pseudo-Monochromatic Imaging?

• Pseudo monochromatic images may be used to 
reduce BH and metal artifacts. But there is only one 
pseudo monochromatic energy that minimizes the 
beam hardening and scatter artifacts.

• At this energy, the CNRD is low.

• Aim: find an image-based approach that yields high 
CNRD and low artifacts.

100 kV

(1-α)⋅

140 kV, Sn

+α⋅ =

118 keV

(1-α)⋅ fLo +α ⋅ fHi =             fPseudo(α)
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EDEBHC

• Extend the simple α-blending by higher order terms:

with the basis images

being the reconstruction of rawdata monomials.

• For a given value of α choose the cαij to minimize the 
artifact content in the resulting EDEBHC image.

• The α-value is constant during optimization and 
defines the desired contrast situation.
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EDEBHC Cost Function

• Artifacts in general,
and beam hardening
and scatter artifacts
in particular, broaden
the histogram peaks
and thus increase the
entropy of the image.

• Thus, the image entropy H

can be used as the EDEBHC cost function:
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EDEBHC Basis Images
Patient Measurement on a Siemens Definition Flash CT System

fLo=f10 f20 f30 f40

fHi=f01 f02 f03 f04

Only basis images without mixed terms are shown here.

C = 0 HU, W = 3000 HU
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EDEBHC Results
Simulation of an Abdomen Phantom

C = 0 HU, W = 200 HU

Pseudo-monochromatic Image
α = 1.6, CNR = 5.84

EDEBHC Image
α = 1.6, CNR = 7.58

100 kV 140 kV Sn
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EDEBHC Results
Patient Measurement

α=0.4α=0.0

P
s

e
u

d
o

-M
o
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o

E
D

E
B

H
C

α=2.0α=1.0

C = 0 HU; W = 1000 HU
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Conclusion

• EDEBHC provides images with reduced beam 
hardening for an infinite number of contrast 
situations.

• Because EDEBHC uses both initial images (fLo and 
fHi) optimal for each chosen α-value, the CNR is 
increased compared to the same contrast situation in 
pseudo-monochromatic imaging.



Thank You!

This presentation will soon be available at www.dkfz.de/ct. 
Parts of the reconstruction software were provided by 

RayConStruct® GmbH, Nürnberg, Germany.


