Emission-based Joint Estimation of Patient and Hardware Attenuation Distributions for Hybrid PET/MR Imaging

> Thorsten Heußer, <u>Yannick Berker</u>, Martin Freitag, and Marc Kachelrieß

German Cancer Research Center (DKFZ) Heidelberg, Germany

xMR-MLAA

- Motivation
 - MRAC underestimates hardware and bone attenuation
 - MRAC underestimates patient activity
- Aim
 - To improve patient AC for non-TOF PET/MR (e.g., Siemens mMR)
- Proposed algorithm
 - Extension of MR-MLAA: MR-based maximum-likelihood reconstruction of attenuation and activity (MLAA¹)

[1] Nuyts, Dupont, Stroobants, Benninck, Mortelmans, and Suetens, "Simultaneous maximum a posteriori reconstruction of attenuation and activity distributions from emission sinograms," IEEE Trans. Med. Imaging 18(5), 393–403 (1999).

Outline

• MR-MLAA

Emission-based patient AC for PET/MR

• xMLAA

Emission-based hardware AC for PET/MR

• xMR-MLAA

– Combination of MR-MLAA and xMLAA

MR-MLAA¹

- Joint estimation of attenuation and activity
 - Using PET emission data
 - Incorporating MR-based prior information
- Iterative approach
 - Update attenuation and activity in an alternating manner
- Objective function

$$Q(\boldsymbol{\lambda}, \boldsymbol{\mu}) = L(\boldsymbol{\lambda}, \boldsymbol{\mu}) + L_{\mathrm{S}}(\boldsymbol{\mu}) + L_{\mathrm{I}}(\boldsymbol{\mu})$$

 $\lambda = activity$ $\mu = attenuation$

Log-likelihood

Prior terms

- Intensity prior L₁
 - Voxel-dependent Gaussian-like probability distribution of predefined attenuation coefficients, e.g., for soft tissue, air, bone
 - Derived from diagnostic T1-weighted MR images

[1] Heußer, Rank, Freitag, Dimitrakopoulou-Strauss, Schlemmer, Beyer, and Kachelrieß, "MR-Consistent Simultaneous Reconstruction of Attenuation and Activity for non-TOF PET/MR," IEEE Trans. Nucl. Sci. 63(5):2443-2451 (2016).

MR-MLAA Intensity Prior L_I

 $L_{\mathrm{I}}(\boldsymbol{\mu}) = \omega(\boldsymbol{r})\beta_{\scriptscriptstyle\mathrm{ST}}L_{\scriptscriptstyle\mathrm{ST}}(\boldsymbol{\mu}) + (1 - \omega(\boldsymbol{r}))\beta_{\scriptscriptstyle\mathrm{AB}}L_{\scriptscriptstyle\mathrm{AB}}(\boldsymbol{\mu})$

We used $\beta_{ST} = 0.1$ and $\beta_{AB} = 0.6$ in our experiments.

(x|MR)-MLAA Update Equations

Activity update (MLEM)^{1,2}

$$\lambda_i^{(n+1)} = \lambda_i^{(n)} \frac{1}{\sum_j M_{ij} a_j^{(n)} / n_j} \sum_j M_{ij} \frac{p_j}{\sum_k M_{kj} \lambda_k^{(n)} + (s_j + r_j n_j) / a_j^{(n)}}$$

• Attenuation update (MLTR)³ $\mu_i^{(n+1)} = \mu_i^{(n)}$

6

Shepp and Vardi. "Maximum likelihood reconstruction for emission tomography," IEEE Trans. Med. Imaging 1(2), 113-22 (1982).
Lange and Carson. "EM reconstruction algorithms for emission and transmission tomography," JCAT 8(2), 306-16 (1984).
Nuyts et al., "Iterative reconstruction for helical CT: a simulation study," Phys. Med. Biol. 43(4), 729–37 (1998).

xMLAA¹

- Flexible hardware components are currently neglected in MR-based AC
 - Headphones
 - Radiofrequency coils
 - Positioning aids
 - ...

• Aim

 Estimate attenuation of flexible hardware from the PET emission data

xMLAA¹ Algorithm

- Joint estimation of attenuation and activity
 - Based on the MLAA algorithm
- Attenuation map updated only within hardware mask
 - "External" MLAA or xMLAA
- Patient attenuation distribution and stationary hardware components assumed correct

[1] Heußer, Rank, Berker, Freitag, and Kachelrieß, "MLAA-based Attenuation Correction of Flexible Hardware Components in Hybrid PET/MR Imaging," EJNMMI Physics 4:12 (2017).

Attenuation Correction Factors

xMR-MLAA

MR-MLAA and xMLAA

- are based on the MLAA algorithm
- exploit the fact that the PET emission data contain information about both activity and attenuation
- have been treated separately in our previous studies
- Aim: Estimate patient activity, corrected for patient and hardware attenuation, by combining MR-MLAA and xMLAA to xMR-MLAA

xmr-mlaa Workflow

xmr-mlaa Algorithm

- Hardware and patient attenuation are updated sequentially
- Hardware update
 - xMLAA (MLEM + xPrior-MLTR)
 - 2 iterations, 21 subsets
- Patient update
 - MR-MLAA (MLEM + MR-Prior-MLTR)
 - 3 Iterations, 21 subsets
- Intensity prior

Hardware Soft Tissue Air/Bone

 $L_{\rm I}(\boldsymbol{\mu}) = \omega_{\rm x}(\boldsymbol{r})\beta_{\rm x}L_{\rm x}(\boldsymbol{\mu}) + (1 - \omega_{\rm x}(\boldsymbol{r}))L_{\rm MR}(\boldsymbol{\mu})$ $L_{\rm MR}(\boldsymbol{\mu}) = \omega(\boldsymbol{r})\beta_{\rm st}L_{\rm st}(\boldsymbol{\mu}) + (1 - \omega(\boldsymbol{r}))\beta_{\rm AB}L_{\rm AB}(\boldsymbol{\mu})$

xMR-MLAA Simulation Study

Phantom

- Head phantom with skull bone and air cavity (frontal sinus)
- Two headphone-like objects to each side of the phantom

PET simulation

- Siemens Biograph mMR geometry
- Simulating Poisson noise (54×10⁶ counts)
- Considering attenuation
- No scatter or randoms simulated

MR-MLAA: Digital Phantom Without Hardware

xMR-MLAA: Digital Phantom Without Hardware

MR-MLAA: Digital Phantom With Hardware, neglected

xMR-MLAA: Digital Phantom With Hardware

17 **dkfz.**

xMR-MLAA Patient Data

 Clinical non-TOF ¹⁸F-FDG-PET/MR data of the head region acquired with a Siemens Biograph mMR
– OSEM, 3 it., 21 subs., Gaussian smoothing (σ = 2 mm)

Attenuation correction

- MRAC: standard MR-based AC
- xMR-MLAA: proposed method
- CTAC: CT-derived AC

Limitation

- Ground truth CT-AC does not show MR hardware components
- xMLAA-based hardware estimates added to CTAC

xMR-MLAA Data Processing

19 **dkfz.**

xMR-MLAA Results: Patient 1

xMR-MLAA Results: Patient 2

21 **dkfz.**

xMR-MLAA Conclusion

- xMR-MLAA jointly estimates hardware and patient attenuation from non-TOF PET emission data
- Standard MRAC: ~15% patient activity underestimation with headphones
- xMR-MLAA: < 5% patient activity error, despite challenging MR segmentation in paranasal sinuses
- TOF information is expected to improve performance: in particular, in MR-MLAA

Job opportunities through our International PhD or Postdoc programs (www.dkfz.de), or through marc.kachelriess@dkfz.de.

This work was supported the DKFZ Postdoctoral Fellowship Program and the Helmholtz International Graduate School for Cancer Research at DKFZ. Parts of the reconstruction software were provided by RayConStruct® GmbH, Nürnberg, Germany.