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Extended Parallel Backprojection (EPBP) for
Arbitrary Cone Angle and Arbitrary Pitch

3D and Phase–Correlated 4D CT Reconstruction
Marc Kachelrieß∗ , Willi Kalender

Abstract— Recent developments in medical CT aim at
faster rotation speeds and a higher number of simultane-
ously acquired slices. These efforts are pushed further by
cardiac CT which is currently the most prominent special–
purpose application in CT [1]. Today, 16-slice scanners are
state–of–the–art. But CT manufacturers have already an-
nounced scanners with far more slices and some even pro-
mote prototypes with up to 256 slices.

Medical CT must support the circular scan trajectory (se-
quence scan) and the spiral trajectory (spiral scan). Arbi-
trary pitch selection is of high importance. In any case,
the complete area of the detector is to be exposed and each
measured ray should contribute to the image. Only then,
optimized dose usage can be achieved.

These requirements cannot be fulfilled by current re-
construction approaches. Exact cone–beam reconstruction,
that is capable of reconstructing large cone–angle data, can-
not cope with arbitrary pitch and phase–correlated data seg-
ments. Only approximate reconstruction approaches have
the potential to handle all requirements. Currently, the
only known approach that can handle phase–correlated true
cone–beam data is an extension to the Advanced Single–
Slice Rebinning (ASSR) algorithm [2], [3]. However, this
generalized approach ASSR CI is limited to 32 slices.

We have therefore developed a new approximate
Feldkamp–type algorithm, the extended parallel backpro-
jection (EPBP)[4]. Its main features are a phase–weighted
backprojection and a voxel–by–voxel 180◦ normalization.
The first feature ensures 3D and 4D capabilities with one
and the same algorithm, the second ensures 100% detector
usage (each ray counts!). The algorithm is evaluated using
simulated data of a thorax phantom and a cardiac motion
phantom for scanners with up to 256 slices.

The standard reconstructions (EPBP Std) are of excellent
quality even for as many as 256 slices. The cardiac recon-
structions (EPBP CI) are of high quality as well and show
no significant deterioration of objects even far off the center
of rotation. Since EPBP CI uses the cardio interpolation
(CI) phase weighting the temporal resolution is equivalent
to that of the well known single–slice and multi–slice cardiac
approaches 180◦CI, 180◦MCI, and ASSR CI, respectively,
and lies in the order of 50 ms to 100 ms for rotation times
between 0.4 s and 0.5 s.

I. Introduction

M
EDICAL computed tomography is currently evolv-
ing faster than ever. Increased spatial resolution, de-

creased scan time, increased temporal resolution, decreased
patient dose, and increased volume coverage are some of the
important trends to mention.

As little as five years ago, single–slice spiral CT was the
state–of–the–art. Then, the first 4–slice scanners became
available. Already in 2001, 16–slice scanners started to re-
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place the 4–slice machines. Apparently, the near future will
shift the number of simultaneously scanned slices to 32, 64
and even more. Slice thickness, and thereby spatial resolu-
tion, will continue to decrease to further improve diagnostic
accuracy. At the same time, dose utilization will increase
to keep the effective patient dose at an acceptable level:
dose modulation techniques, automatic exposure control
and improved detector materials will help to do so [1].

Besides improved spatial resolution, improved contrast
resolution and low patient dose one is further interested
in highest temporal resolution to allow imaging the heart.
This is done using short rotation times combined with de-
dicated phase–correlated reconstruction algorithms as they
are available since 1996/1997 [5].

The relevance for image reconstruction algorithms lies
in the expected increase in cone angle and in the demand
for phase–correlated reconstruction. Neglecting the cone–
angle of the scanner as done in all 4–slice and in all com-
mercial cardiac 16–slice reconstruction algorithms will yield
unacceptable image artifacts for future scanners.

There are fast and efficient cone–beam algorithms with
acceptable image quality available for cone–beam spiral
CT. However, they do not ensure 100% dose usage and/or
they do not work for arbitrary spiral pitch. Further, none
of them is capable of combining these demands with phase–
correlated imaging at wider cone angles.

To fill the missing gap, we propose EPBP, a new approx-
imate cone–beam reconstruction that allows for arbitrary
pitch and for phase–correlated reconstruction and that en-
sures 100% detector usage. Details of cardiac CT scanning
and the restrictions on the maximum pitch as a function
of the patient’s heart rate can be found in references [6],
[7], [8]. The phase selection mechanisms described there,
namely the cardio interpolation (CI) and the cardio delta
(CD) approach are used for EPBP as well. Especially
EPBP CI that uses CI, the most promising multi–phase
weighting currently available, is evaluated here.

In this paper, we will outline the EPBP Std and the
EPBP CI algorithm and give some descriptive examples.

II. Simulations

To evaluate our new approach we have simulated spiral
cone–beam data corresponding to the in–plane geometry
of a typical medical CT scanner (1160 projections per ro-
tation, 672 detector channels per detector row, and a fan
angle Φ = 52◦) using a dedicated x–ray simulation tool
(ImpactSim, VAMP GmbH, Möhrendorf, Germany). Two
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phantoms have been simulated: the thorax phantom de-
scribed in the phantom data base http://www.imp.uni–
erlangen.de/forbild and the cardiac motion phantom de-
scribed in [7].

The simulated scan protocol uses 0.42 s rotation time
(143 rpm), M × 0.75 mm collimation with M = 2m simul-
taneously scanned slices where m = 4, . . . , 8, and a pitch of
p = 0.375. The table increment can be found as d = MSp.

III. Geometry

A. Scan Geometry

The scan geometry assumed here is a fan–beam geome-
try with cylindrical detectors and a spiral focus trajectory.
The EPBP approach is based on a rebinning to parallel
geometry. Other geometries, such as flat detectors, can be
easily incorporated by modifying the corresponding rebin-
ning and transform equations. Note that in the limit of
p = 0, the spiral reduces to a circular trajectory. EPBP
copes with sequence data as well as it does with spiral data.

The source trajectory is parameterized by the view angle
α as

s(α) = RF
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RF denotes the radius of the focal spot trajectory and d
denotes the table increment per rotation.

The coordinate vector of the detector element (α, β, b) is
given as

r(α, β, b) = s(α) + RFD
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β and b denote the transaxial and longitudinal detector
components, respectively.

To rebin the transaxial components of the cone–beam
data to parallel geometry we parameterize a ray by its dis-
tance ξ to the axis of rotation and by its angle ϑ with re-
spect to the negative y–axis. The normal form of the ray’s
x–y–components is given as x cosϑ + y sinϑ − ξ = 0. This
definition was chosen to have the central rays for fan–beam
(β = 0) and for parallel beam (ξ = 0) coinciding for α = ϑ.
The relation between a ray in fan–beam coordinates (α, β)
and a parallel–beam ray (ϑ, ξ) is the familiar transform

ϑ = α + β

ξ = −RF sinβ
and

α = ϑ + arcsin ξ/RF

β = − arcsinξ/RF

. (2)

B. Point Projection

For backprojection, we need to know the detector coor-
dinates (ξ, b) that result from projecting the point (x, y, z)
from s(α) onto the cylindrical detector. The radial coordi-
nate is given as

ξ = x cosϑ + y sinϑ.

The longitudinal detector coordinate can be computed us-
ing the intersection theorem. The transaxial distance of

the respective voxel to the source is given as

D2 = (RF sinα − x)2 + (RF cosα + y)2

= R2

F − 2RFr sin(α − ϕ) + r2

with (x, y) = (r cosϕ, r sinϕ) or, equivalently,

D = RF cosβ + η =
√

R2
F
− ξ2 + η

with η = y cosϑ − x sinϑ. Now, find b by scaling the axial

distance z − d
α

2π
from D to RFD:

b =
RFD

D
(z − d

α

2π
). (3a)

And we find another representation of ξ:

ξ = −RF sinβ = RF

x cosα + y sinα

D
. (3b)

IV. Reconstruction

The extended parallel backprojection algorithm consists
of the following five steps:
- azimuthal rebinning: p(α, β, b) → p(ϑ, β, b),
- longitudinal rebinning: p(ϑ, β, b) → p(ϑ, β, l),
- radial rebinning: p(ϑ, β, l) → p(ϑ, ξ, l),
- convolution: p(ϑ, ξ, l) → p̂(ϑ, ξ, l),
- weighting and backprojection: p̂(ϑ, ξ, l) → f(x, y, z).

A. Azimuthal Rebinning

The original projection data p(α, β, b) are converted from
fan–beam to fan–parallel geometry using (2) as follows:

p(ϑ, β, b) = p(α, β, b) with α = ϑ − β.

B. Longitudinal Rebinning

Convolving spiral data in the detector row direction (con-
stant b) yields severe cone–beam artifacts. As indicated
by ASSR [2], SMPR [9], and exact cone–beam reconstruc-
tion [10] the optimal direction of convolution is the tangent
ds(α)/dα. To align the fan–parallel detector rows with the
optimal direction of convolution a longitudinal rebinning is
required. Therefore, we are interested in the relationship
between b and ξ when moving along ds. Using (3) one finds

db

dξ
=

d(bD)

d(ξD)
=

RFD dz

RF(dx cosα + dy sinα)
=

RFD d

2π R2
F

;

in the last step (1) was used to insert the components of
ds. Now, we define a new longitudinal variable l as

b = l + λξ with λ =
db

dξ
=

dRFD

2π R2
F

such that dl/dξ = 0 in the direction of ds. Then, do the
longitudinal rebinning

p(ϑ, β, l) = p(ϑ, β, b) with b = l + λξ = l − λRF sinβ

to switch to l as the new independent variable.
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Whenever b exceeds the detector limits bmin and bmax

for some β we extrapolate by repeating the outermost de-
tector row. The values that are made up by extrapolation
are required during convolution which operates on com-
plete detector rows, always. During backprojection these
extrapolated points are not accessed; backprojection rather
respects the physical detector area!

C. Radial Rebinning

The radial rebinning converts to equidistant parallel co-
ordinates. We use (2) to find

p(ϑ, ξ, l) = p(ϑ, β, l) with β = − arcsinξ/RF.

D. Convolution

Now, convolution of the detector rows is performed using
a standard convolution kernel k(ξ), as, for example, the
Shepp–Logan kernel.

p̂(ϑ, ξ, l) = p(ϑ, ξ, l) ∗ k(ξ)

yields the convolved data p̂ needed for backprojection.

E. Weighting and Backprojection

In this step, we regard the backprojection of a fixed
voxel, say one located at r = (x, y, z). Let V denote the
set of view angles ϑ under which r is measured.

Assume a temporal window T that comprises all ϑ that
correspond to allowed data. For the standard reconstruc-
tion EPBP Std, all data acquired are allowed data and
therefore T = R. For the reconstruction of cardiac data,
T can be defined by specifying a cardiac motion phase cR

that counts relative to some synchronization peaks and a
phase width 0 < ∆c ≤ 1; T will then consist of a set of dis-
junct intervals. EPBP CI chooses ∆c as small as allowed by
the completeness condition (see below). Other definitions
may include absolute timing information or the restriction
to only one temporal interval of length π (single–phase re-
construction), or two intervals (bi–phase reconstruction).

Regardless of what convention is used to define T , the
intersection I = V ∩T , that comprises all views to be used,
must be 180◦–complete:

⋃

k

(I + kπ) = R.

Now, assume a weighting function w(ϑ) whose support
equals I , i.e. w(R \ I) = {0}, and

∑

k w(ϑ + kπ) 6= 0.
The last condition can easily be achieved by using positive
weights on I only. For EPBP CI we use a multi–triangular
weight function: triangle functions located on each of I ’s
disjunct intervals.

By normalizing w as

ŵ(ϑ) =
w(ϑ)

∑

k

w(ϑ + kπ)

we achieve

∑

k

ŵ(ϑ + kπ) = 1 and

∫

dϑ ŵ(ϑ) = π.

Backprojection

f(x, y, z) =

∫

dϑ p̂(ϑ, ξ, l)ŵ(ϑ)

with ξ = ξ(x, y, ϑ) = x cosϑ + y sinϑ

α = ϑ − β = ϑ + arcsin ξ/RF

l = b(x, y, z, α) − λξ

then yields the desired voxel value at (x, y, z).

V. Results

Figure 1 shows that image quality of the thorax phantom
is excellent with EPBP, even for as many as 256 slices. As
indicated by the ribs, ASSR (which is in fact designed for
up to about only 60 slices [2]) cannot cope with this large
cone–angle; the same applies to the highly related AMPR
algorithm defined in reference [11].

Fig. 1. Thorax, scanned with 256 × 0.75 mm collimation and d =
72 mm table increment. A heart rate of 120 min−1 was simulated
for EPBP CI. (0/500)

Considering that EPBP CI uses only a fraction of the
data available (here, roughly 25%), depending on the local
heart rate and on the reconstruction position, the images
are almost as good as the EPBP Std reconstructions, apart
from the increased image noise. The only exception is a
slight variation in the reconstructed density close to the
vertebrae.

Figure 2 shows reconstructions of the cardiac motion
phantom for a 16–slice and a 256–slice scanner. Since the
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(a)16 × 0.75 mm collimation

(b)256 × 0.75 mm collimation

Fig. 2. Transaxial slices and MPRs of the cardiac motion phantom reconstructed with various algorithms using a standard 16–slice scanner
and a wide cone–angle 256–slice CT. The sagittal MPRs (bottom) show additional δ–objects used to measure resolution. (0/500)

field of view shows only the central parts of the patient, the
in–plane images of the ASSR approach are acceptable even
for the 256–slice scanner. However, with 256–slice ASSR
the multiplanar reformations (MPRs) tend to be blurred in
the z–direction and full width at half maximum FWHMz of
the slice sensitivity profile is increased significantly whereas
the in–plane resolution FWHMxy is the same as for the 16–
slice case.

EPBP, in contrast, behaves very well for all simulated
scanners (16, 32, 64, 128 and 256 slices). Spatial resolu-
tion is slightly higher than for the single–slice rebinning
algorithms. Image noise increases for EPBP CI due to the
phase–weighting. This observation is valid for all the other
simulated geometries and heart rates (we have looked into
fH = 40 min−1, . . . , 140 min−1). EPBP generally behaves

equal to or better than ASSR.

Finally, figure 3 gives an example of reconstructed pa-
tient data. The data shown are correlated to the patient
motion function, the so–called kymogram, which can di-
rectly be derived from the acquired rawdata [12]. The
standard reconstructions of ASSR Std and EPBP Std are
comparable due to the low number of slices; the phase–
correlated EPBP CI images are of high image quality and
correspond to the gold–standard in cardiac CT imaging.

VI. Discussion

The extended parallel backprojection appears to be ade-
quate for medical CT image reconstruction in all respects.
EPBP image quality is equivalent to existing 4– or 16–
slice standard and cardiac algorithms for a wide range of



FULLY 3D’03 TU AM2–3 5

Fig. 3. ASSR and EPBP, 12 × 0.75 mm collimation, 3.375 mm table increment. The phase–correlated images are reconstructed relative to
the kymogram peaks at 0% and 50% of K-K, respectively. (0/500)

simultaneously scanned slices. Even data with M = 256
slices yields excellent image quality. For standard recon-
structions this is not surprising since EPBP Std is similar
to other Feldkamp algorithms (as long as these perform
convolution along the tangent direction). For wide cone
angle cardiac data, where no other phase–correlated cone–
beam algorithm is available yet, EPBP CI performs very
well even for objects far off the isocenter (ribs in figure 1).

Feldkamp–type algorithms are superior to ASSR [2],
AMPR [11], or SMPR [9] for large M . Wide cone angle car-
diac CT is currently only possible with EPBP. Its unique
weighting strategy that assigns individual data ranges to
each voxel, ensures 100% data usage and thus the max-
imum dose utilization possible. The future of medical
sequential and spiral CT will certainly include the idea
of phase–correlated/phase–weighted 3D backprojection of
EPBP–type, or modifications thereof.
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