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Abstract— Phase–correlated CT, as it is used for cardiac
imaging, is the most popular and the most important but
also the most demanding special CT application, today. Ba-
sically it fulfills the task of depicting a quasi–periodically
moving object with significantly reduced motion artifacts.
Although the image quality using phase–correlated proto-
cols and reconstruction techniques is significantly better
than the image quality obtained with standard (not phase–
correlated) techniques there still are motion artifacts re-
maining and further improvements in temporal resolution
are still required. These can be either obtained by further
increasing the rotation speed or by having more than one
source–detector system rotating around the patient.

Increasing rotation speed is mainly an engineering issue
and due to increased centrifugal forces it appears unlikely
to go significantly below the trot = 0.33 s that are available
already. We therefore consider a spiral cone–beam CT scan-
ner that has G tubes and detectors mounted and call this
device a multi–threaded or G–threaded CT scanner. Aim-
ing for improved temporal resolution the relative temporal
resolution τ is studied as a function of the motion rate (e.g.
the heart rate fH) and the degree of scan overlap (i.e. the
pitch value p for spiral scans or the number of rotations for
a circle scan that corresponds to 1/p) for various configu-
rations. The parameters to optimize for are the number of
threads G and the interthread angles ∆α̃ and ∆α̂. Due to
practical reasons we restrict ourselves to double–threaded
(G = 2) and triple–threaded (G = 3) although our optimiza-
tion algorithm can cope with any number of threads.

For G = 2 we found the optimum whenever the angle be-
tween the tubes is 90◦ and when both threads are mounted
in the same axial plane. Mounting the threads longitudi-
nally offset results only in a slight reduction of the temporal
resolution. The optimum interthread angles for G = 3 are
60◦ or 120◦; both result in identical temporal resolution val-
ues. We further found that the mean temporal resolution
achievable with an optimized multi–threaded CT scanner is
a factor of G better than the mean temporal resolution ob-
tained with a single–threaded scanner. This finding meets
the expectations.

Approximate image reconstruction of multi–threaded
rawdata is performed by modifying the EPBP cone–beam
reconstruction algorithm. Reconstructions of a simulated
cardiac motion phantom are shown and turn out to improve
with increasing G.

I. Introduction

CARDIAC computed tomography challenges the prob-
lem of imaging moving objects without showing signif-

icant motion artifacts. In general, CT requires at least 180◦

of projection data to perform image reconstruction.1 This
implies that the intrinsic temporal resolution of a standard
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1For fan–beam or cone–beam CT there are some algorithms that
can do with a lower scan interval if the object is of adequate shape
and if a reduced field of view can be accepted [1]. Here, we will not
consider these approaches since they appear too restricted for cardiac
imaging.
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Fig. 1. Temporal resolution vs. heart rate for single–threaded CT
(taken with permission from [3]).

CT scan is in the order of trot/2 or worse, where trot is
the time needed for a full rotation of the scanner. With
modern cone–beam CT scanners it is possible to achieve
trot/2 = 165 ms which is not sufficient to perfectly image
the anatomical details of the human heart. Standard CT
further makes use of all the data contributing to a given
voxel and therefore exhibits a temporal resolution of about
trot/p where p is the spiral pitch value (typical values lie in
the range p ∈ [0.1, 1.5]).

With dedicated cardiac algorithms it is possible to reduce
the data to a single 180◦ segment and achieve trot/2. If the
object is moving in a periodic fashion it is further possible
to divide the required 180◦ into several smaller segments
and collect these smaller data segments from adjacent mo-
tion periods (e.g. heart cylcles). Thereby the temporal res-
olution can be improved proportionally to the number of
segments used. One can further align these allowed data
intervals (be it one or several segments) to a desired mo-
tion phase and obtain images where the object’s motion is
frozen in the desired state. These basic concepts of phase–
correlated CT imaging were first proposed and evaluated in
reference [2] and since then they are widely used in clinical
CT [3], [4], [5], [6], [7], [8], [9], [10], [11].

Although the use of multi–segment reconstruction com-
bined with very fast rotating scanners appears to provide
very high temporal resolution (e.g. 55 ms if three segments
are used and a rotation time of 330 ms is assumed) this
is rarely the case since the ideal situation where the 180◦

interval can be divided into N intervals of size 180◦/N only
occurs for selected values of fH trot (see figure 1). The aver-
age temporal resolution (averaged over the range of typical
heart rates) is far from ideal.
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Improvements of temporal resolution can also be ob-
tained by equipping a gantry with not only one x–ray tube
and one detector but by mounting G tubes and G detec-
tors that rotate together around the patient [12], [13]. If
these multiple sources are evenly distributed on a half cir-
cle one may expect an improvement in temporal resolution
by a factor of G since the 180◦ of data necessary for image
reconstruction can be acquired G times faster than with a
single–threaded scanner. To quantify the improvements in
view of multi–segment image reconstruction and in view of
the complicated behavior of temporal resolution on fH trot
we have conducted a simulation study. Our study will fur-
ther seek for the optimal configuration by varying the in-
terthread parameters of the scanner.

Possible applications (including cardiac CT) of G–
threaded CT are

• Phase–correlated imaging: This issue is discussed in this
paper.
• Motion detection and kymogram processing [14]: The si-
multaneous acquisition of two or more projections of an
object allows to determine the object’s position. This can
be used to support phase–correlated imaging with the syn-
chronization information.
• Dual energy CT [15]: Using different tube voltages Ug

for each thread’s tube allows to decompose the rawdata
into two base functions (e.g. into the materials water and
bone or into the contributions stemming from photo effect
or Compton effect).
• Scatter estimation: One thread may be partially used
to show scatter information. This may be done by using
beamstops. Prior to image reconstruction the missing data
can be replaced by another thread’s data.
• High–resolution imaging: One thread may have a high
resolution detector at the expense of a reduced field of mea-
surement. The high resolution data are truncated but can
be easily extended using another thread’s data that runs a
low–dose acquisition.

II. Geometry

We assume the scanner to have G tubes mounted on one
pivot bearing that rotates with constant angular velocity
and we assume to have a table that is translated through
the rotating gantry with constant velocity parallel to the
gantry’s rotation axis. The source positions are then given
as a function of time t as

sg(t) =





Rg sin(t + αg)
−Rg cos(t + αg)

p t + zg





with g = 1, . . . , G. To simplify our further considerations
we rescaled the temporal axis (t–axis) to obtain a rotation
time of trot = 2π and we rescaled the longitudinal axis (z–
axis) such that the detector’s longitudinal extend is L = 2π.
The table increment per rotation is given as d = 2πp from
which we see that p = d/L is the spiral pitch value.

Rg is the distance of source g to the isocenter. The pos-
sibility of chosing different values of Rg for each thread will

not play a role for us since we assume the temporal infor-
mation to be associated with the central ray and neglect
effects of the finite fan–angle. Thus we may safely assume
Rg = 1.

III. Data Sufficiency

A z–position zR is illuminated at

t ∈ T =
⋃

g

Tg with Tg =
(

[−π, π] + zR − zg

)

/p.

The projection angles α = t + αg that are covered during
that illumination are

α ∈ AStd =
⋃

g

AStd
g with AStd

g = Tg + αg.

Standard image reconstruction at zR can be performed
(with an approximate cone–beam algorithm) when AStd

covers an angular range of 180◦ or more.
Here, we are interested in phase–correlated image recon-

struction and have a set of synchronization points ts avail-
able, with ts < ts+1. These synchronization points may
correspond to the R–peaks of the patient’s ECG signal, to
the K–peaks of a patient’s kymogram or they may corre-
spond to shifted versions of these signals.

Attached to these sync peaks are the allowed data ranges
or data segments that are required for reconstruction. The
union of all these segments

S(τ) =
⋃

s

(

ts + [ts−1 − ts, ts+1 − ts]
τ

2

)

=
⋃

s

(

ts(1 −
τ

2
) + [ts−1, ts+1]

τ

2

)

is the set of time stamps that may enter the reconstruction.
The parameter τ ∈ [0, 1] is the relative temporal resolution
parameter. It is relative since it measures the width of
each interval relative to the distance of adjacent sync peaks.
Thereby, τ is the fraction of the motion cycle that enters
the image. Consequently, the relative temporal resolution
τ is a better measure for image quality than an absolute
temporal resolution measure where image quality would
further depend on the motion rate of the object.

Note that for τ = 1 the intervals touch at the midpoints
1

2
(ts + ts+1) and we obtain S(1) = R. Thus τ = 1 allows us

to mimic a standard image reconstruction situation where
all data are allowed to enter reconstruction.

Given a sufficiently large τ the angular contribution of
thread g to the desired z–position is Tg ∩ S(τ) + αg and
combining the view angles of all G threads then results in

ACI =
⋃

g

ACI
g with ACI

g = Tg ∩ S(τ) + αg.

Here, CI stands for cardiac interpolation and is used to
distinguish from standard image reconstruction. The value
of τ must be chosen large enough to ensure ACI to be 180◦–
complete, i.e.

⋃

k

(ACI + kπ) = R
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is demanded. Our implementations of cardiac image recon-
struction (for single–slice, multi–slice, cone–beam and for
G–threaded cardiac CT) use a binary search to determine
the minimal possible τ that still ensures 180◦–complete
data; an analytic solution to determining τ is not known,
to the best of our knowledge.

IV. Relative Temporal Resolution

To determine the actual relative temporal resolution τ̂
that will, in general, differ from the relative temporal reso-
lution parameter τ one must compute the full width at half
maximum of the phase sensitivity profile (PSP). The PSP,
that was proposed in reference [3], quantifies the contribu-
tion of each motion phase to the final image.

Let τ be fixed and large enough such that ACI(τ) is 180◦–
complete. Thread g contributes the angles ACI

g = Tg ∩

S(τ) + αg which is a finite union of disjunct intervals

ACI
g (τ) =

⋃

ν

(

agν + bgν [−1, 1]
)

.

We now define multi–triangular weight functions

wg(α) =
∑

ν

Λ(
α − agν

bgν

)

where Λ(·) is a triangle function of area and height 1. In
general, Λ can be replaced by any kind of weight func-
tion such as a Gaussian function, for example, as long as
suppwg ⊇ ACI

g .
We further define the normalization

ŵg(α) =
wg(α)

∑

kγ

wγ(α + kπ)

which exists since the denominator cannot become zero (re-
member that ACI is complete).

We achieved
∑

kg

ŵg(α + kπ) = 1 and
∑

g

∫

dα ŵg(α) = π

which implies proper normalization for image reconstruc-
tion. This means that each thread must be weighted by its
normalized weight function ŵ(α) before a slice at zR can
be reconstructed. Weighting can also be done in temporal
domain using

w̃g(t) = ŵg(α − αg).

Now, we use w̃g(t) to define the phase sensitivity profile
(PSP) that was proposed in [3]. It is defined as the his-
togram of cardiac phases c(t) weighted by the normalized
projection weights w̃g(t) as follows:

PSP(c) =

∫

dt δ(c(t) − c)
∑

g

w̃g(t)

where the cardiac phase c(t) ∈ [0, 1) is defined as

c(t) =
t − ts

ts+1 − ts

and s is chosen such that ts ≤ t < ts+1. The full width
at half maximum τ̂ of the PSP is our measure of temporal
resolution: PSP(0)/2 = PSP(τ̂ /2).
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Fig. 2. Winning configurations for G = 1, 2 and 3.
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Fig. 3. Plots of temporal resolution τ̂ for single–, double– and triple–
threaded scanners as a function of fHtrot and p. Images are
windowed to the range [0, 1] in the upper row and to [0, 1/G] in
the lower row. The ROI is defined by p ≤ fHtrot and is located
in the lower right triangle of each plot (indicated by the dashed
line). ROI results are given in the form (Min, Mean±StdDev,
Max). All temporal resolution values are given in %.

V. Simulation Study

Our aim is to find a configuration that optimizes tempo-
ral resolution over a wide range of heart rates as a function
of the multi–threaded scanner geometry. For this we vary
G, αg, zg and p.

For our simulations we assumed equidistant sync points
ts = s∆t. Note that ∆t/2π is the ratio of the duration
1/fH of one heart beat to the duration trot of one gantry
rotation. Thereby, we find fHtrot = 2π/∆t.

We will further restrict our considerations to the cases
G = 1, G = 2 and G = 3 that correspond to a standard,
a double–threaded and a triple–treaded spiral cone–beam
CT scan, respectively. We also assume equidistant sam-
pling for the interthread angles: αg = g∆α and zg = g∆z.
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Fig. 4. EPBP reconstructions for up to three threads. The bottom
row shows the decomposition of the image for G = 3 into the
separate threads.

Now, τ̂ = τ̂ (G, p, ∆t, ∆α, ∆z) can be optimized wrt the in-
terthread parameters ∆α and ∆z to cover a wide range of
heart ranges ∆t and a wide range of pitch values p for some
given G.

VI. Results

The optimum scanner configurations that were found by
minimizing τ̂ as a function of ∆α and ∆z for a wide range
of heart rates and pitch values are shown in figure 2. As ex-
pected, ∆α = π/g and ∆z = 0 should be chosen to gain the
optimal temporal resolution. Of course symmetry allows
to choose ∆α = 2π/3 in place of π/3 for G = 3.

Our optimization is based on taking the mean value for
the region p ≤ fHtrot. Plots that show τ̂ as a function of
fHtrot and p for the three winning configurations are given
in figure 3. Here, the ROI p ≤ fHtrot is indicated, too. The
figure nicely illustrates the well known resonance phenom-
ena that occur for example when the patient’s heart rate
is equal to or a fraction of the scanners rotation frequency.
In view of the resonance phenomena it is interesting to
note that the minimum, the maximum, the mean and the
standard deviation of the ROI are approximately propor-
tional to 1/G. This implies that having a scanner with
G threads will have a G–fold performance compared to a
single–threaded CT.

To provide image–based evidence the cardiac motion
phantom [3] was simulated for 1 ≤ G ≤ 3, for a num-
ber of configurations (varying interthread parameters) and
a number of heart rates. Images were reconstructed with
our generalized version of the EPBP algorithm (which is
Feldkamp–type, see [10]). An example of a 256–slice spiral
scan (1160 projections per rotation, 672 channels per detec-
tor row, pitch 1/4, trot = 0.5 s, slice thickness S = 0.6 mm)
is shown in figure 4 for a heart rate of 80 min−1. The re-
constructions correspond to the fast motion phase of the
cardiac motion phantom [3]. One can clearly see highly im-
proved image quality for G = 3. This is not so evident for
G = 2 since figure 4 turned out to show an unlucky situa-
tion. In most other cases (not shown) the double–threaded
scanner is superior to G = 1 but is always inferior to G = 3.

VII. Discussion

We analyzed the theoretical performance of a G–
threaded spiral cardiac CT to determine the optimal ge-
ometry of respective scanners. The results turned out to
correspond to the natural choice: 180◦/G interthread an-
gle and zero longitudinal interthread distance are optimal.
Temporal resolution and thus image quality is expected to
improve proportional to the number of available threads
for all combinations of heart rate, reconstruction phase,
rotation time and pitch value. Reconstructions prove that
image quality becomes better (less motion and less cone–
beam artifacts) with increasing G. Evidently, G–threaded
CT seems a promising technique to further enhance CT
imaging in general and cardiac CT in particular.
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