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Abstract— Image data are noisy samples acquired at dis-
crete positions. Signal processing explicitly or implicitly
involves some kind of interpolation to match a desired point
spread function, to match a certain spatial resolution or to
match certain contrast detection criteria. By maximizing
a resolution–, noise– and dose–dependent figure of merit
Q = Q(R, N, D) which is chosen as Q2 = 1/(RN2D) for a one–
dimensional detector and as Q2 = 1/(R2N2D) for a two–
dimensional detector we determine the optimal detector
size. In our case resolution R is the effective slice thick-
ness Seff that is given by the full width at half maximum of
the slice sensitivity profile. In multi–slice CT reconstruc-
tion Seff can be freely selected over a wide range of values
starting from the collimated slice thickness S up to typically
10 mm. Our findings are that Seff should be chosen at least
25% above the collimated slice thickness S. This choice in-
creases dose usage by about 30% and corresponds to a dose
reduction of 23% compared to a situation where Seff = S.

I. Introduction

IT is common practice to push spatial resolution to the
limit that is dictated by the size S of the detector ele-

ments. In most cases designers of CT hardware and image
reconstruction software are afraid of losing spatial resolu-
tion. In multi–slice CT or cone–beam CT, for example,
many efforts are taken to achieve an effective slice thick-
ness — it is defined as the full width at half maximum
(FWHM) of the slice sensitivity profile (SSP) — that equals
the collimated slice width. There are numerous publica-
tions discussing issues of replacing slice–by–slice interpo-
lation by some kind of conjugate ray interpolation just to
avoid the 27% ( = 2 −

√
3) increase of Seff inherent to lin-

ear interpolating algorithms. Similarly, other authors are
concerned that rebinning to parallel geometry may suffer
from decreased transversal spatial resolution. They tend to
use fan–beam backprojection algorithms that are compu-
tationally less efficient and theoretically more complex and
less intuitive just to avoid an additional rebinning step.

Of course it is true that linear interpolation decreases
spatial resolution. However, image noise is decreased, too!
We will see that this decrease in image noise more than
compensates for the decrease in spatial resolution and that
one should simply use smaller detector elements instead of
redesigning interpolation algorithms. For a given scanner
this implies that reconstructions at maximum spatial res-
olution are far from optimal with respect to the tradeoff
between noise, dose and spatial resolution [1].

II. Imaging System

We assume a rectangular presampling function of width
S (collimated slice thickness) and area 1

s(z) = II∗S(z) =
1

S
II(

z

S
);
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a typical value for modern CT scanners is S = 0.5 mm.
Further, regard three representative interpolation algo-

rithms of area 1 that allow a) to continue the discrete sam-
ples onto R and b) to balance between noise and spatial
resolution:

a1(z) = II∗∗w,w(z) SSP1(z) = II∗∗∗S,w,w(z)

a2(z) = II∗∗S,w(z) SSP2(z) = II∗∗∗S,S,w(z)

a3(z) =
1

√

π/3w
e−3z2/w2

SSP3(z) = II∗S(z) ∗ a3(z).

The parameter w is a width parameter and will be used to
adjust for optimal image quality. Note that for w = S the
first two algorithms correspond to simple linear interpola-
tion (if we neglect the fact that the sampling distance be-
tween two detector rows slightly differs by the septa thick-
ness δ from the width S of the presampling function). The
third algorithm is a Gaussian interpolator that can be trun-
cated after a few elements to remain finite–sized.

The algorithms ai and their point spread functions
SSPi = s ∗ ai are derived and plotted in reference [1].
The rectangle functions are recursively defined as II∗∗a,b =
II∗a ∗ II∗b and II∗∗∗a,b,c = II∗∗a,b ∗ II∗c .

Noise propagation through the algorithm a(z) is charac-
terized by the algorithm’s noise factor

F 2 =

∫

dz a2(z).

Given that the dose D̄ captured by the detectors and con-
tributing to the image is proportional to the product of
patient dose D and of the geometric efficiency S/(S + δ)
with δ being the thickness of the septa we find — after
dropping constants of proportionality — that image noise
is given by N2 = F 2/D̄ = F 2(S + δ)/(SD).

The quantities F and N are analytically derived in ref-
erence [1] for the three algorithms.

III. Image Quality

Let

Q2 =
1

SeffN2D
=

1

SeffF 2

S

S + δ

be the underlying measure of image quality that is to be op-
timized. Note that Qi = Qi(δ, S, Seff) for algorithm i. The
spatial resolution Seff is a function of w and vice versa; this
relation depends on the algorithm type i as well. Further
note that Q is a dimensionless quantity due to normalizing
a(x) and s(x) to area 1.

We define the optimal detector size S for some desired
spatial resolution Seff as

Si(δ) = argmax
S

Q2

i (δ, S, Seff).



IV. Results

The algorithms 1, 2, and 3 are shown in red, green, and
blue color, respectively. To allow for reproduction on gray
scale and even black and white printers the plot style is
chosen to be solid, dotted, and dashed, respectively, for
the three algorithms.

Figure 1 assumes that no septa are present. It demon-
strates that it is of advantage to chose Seff as large as pos-
sible with algorithms 1 and 3. Algorithm 2 is a trapezoidal
interpolation that seeks for rather rectangular SSPs. This
is either achieved for large or for small Seff and only in–
between, where SSP2(z) is bell–shaped, the curve exhibits
a maximum.

Figures 2 corresponds to a far more realistic situation
since septa are considered. It demonstrates how the detec-
tor size S influences image quality when the septum thick-
ness is 0.1 and when a spatial resolution of Seff = 1 is
required. Obviously neither very small nor very large S
are of advantage. The penalty for small detectors lies in
the reduced dose usage due to the septa. Detectors as large
as Seff are of disadvantage since the resulting SSP is not
bell–shaped and too much noise propagates into the im-
age. Using the Gaussian algorithm and a slice thickness of
about 0.5Seff is optimal and increases Q2

3 by a factor of 1.3
compared to the often used S = Seff combined with some
triangular interpolation.

Optimal slice width S and achievable image quality Q as
a function of the septum size δ is shown in the last figure.
We can clearly see that S ≈ 0.5Seff is a very good choice
for moderate sized septa.

V. Discussion

Maximizing a dose–, noise– and resolution–dependent
figure of merit Q shows that spatial resolution should be
selected significantly below the theoretical limit given by
the detector size. An increase of Q2 by a factor of 1.3 was
demonstrated for a typical CT situation. It corresponds to
a dose reduction potential of 23% (= 1 − 1/1.3). Perform-
ing that optimization in both detector dimensions yields
a dose reduction of 41% (= 1 − 1/1.32). Note that sim-
ilar results are obtained when optimizing with respect to
a contrast–to–noise at unit dose figure of merit [2]. This
indicates that our findings are not specific to the figure of
merit presented here but appear to apply for more general
detection tasks.

Our recommendation in a nutshell: Reconstructions with
a slice width Seff that equals the collimated slice width S
should be avoided. Choose Seff ≥ 1.25S or higher.
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Fig. 1. Quality Q2

i
(δ, S, Seff) as a function of z–resolution Seff for a

fixed collimated slice thickness S = 1 and negligible septa δ = 0.
Horizontal lines show the asymptotic behaviour and the vertical
line shows the lower limit of Seff which is the width S of the
aperture.
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Fig. 2. Plot of Q2
i
(δ, S, Seff) as a function of S for δ = 1/10 and Seff =

1. The horizontal line is located at 1/(1+δ) ≈ 0.91, the maximum
of Q2

3
(δ, S, Seff) lies 30% higher. Obviously, about 30% quality

(or dose efficiency) can be gained for this septa thickness by using
detectors that are half of the size of the desired resolution.
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Fig. 3. To best achieve Seff = 1 use these combinations. The plot
shows optimum collimated slice thicknesses as a function of septa
size δ (curves from lower left to upper right) and the correspond-
ing Q2

i
–values (curves from upper left to lower right).


