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Abstract 

Background 

miRNA profiles are promising biomarker candidates for a manifold of human pathologies, 

opening new avenues for diagnosis and prognosis. Beyond studies that describe miRNAs 

frequently as markers for specific traits, we asked whether a general pattern for miRNAs 

across many diseases exists. 



Methods 

We evaluated genome-wide circulating profiles of 1,049 patients suffering from 19 different 

cancer and non-cancer diseases as well as unaffected controls. The results were validated on 

319 individuals using qRT-PCR. 

Results 

We discovered 34 miRNAs with strong disease association. Among those, we found 

substantially decreased levels of hsa-miR-144* and hsa-miR-20b with AUC of 0.751 (95% 

CI: 0.703–0.799), respectively. We also discovered a set of miRNAs, including hsa-miR-

155*, as rather stable markers, offering reasonable control miRNAs for future studies. The 

strong downregulation of hsa-miR-144* and the less variable pattern of hsa-miR-155* has 

been validated in a cohort of 319 samples in three different centers. Here, breast cancer as an 

additional disease phenotype not included in the screening phase has been included as the 20
th

 

trait. 

Conclusions 

Our study on 1,368 patients including 1,049 genome-wide miRNA profiles and 319 qRT-

PCR validations further underscores the high potential of specific blood-borne miRNA 

patterns as molecular biomarkers. Importantly, we highlight 34 miRNAs that are generally 

dysregulated in human pathologies. Although these markers are not specific to certain 

diseases they may add to the diagnosis in combination with other markers, building a specific 

signature. Besides these dysregulated miRNAs, we propose a set of constant miRNAs that 

may be used as control markers. 
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Background 

In the past decade, non-coding miRNAs have aroused scientists’ interest and their exploration 

has revolutionized biology. Since the first miRNA was discovered in Caenorhabditis elegans 

in 1993 [1], an increasing number of miRNAs for various species have been reported. 

Currently, release 20 of the miRBase [2,3] contains 24,521 entries representing hairpin 

precursor miRNAs, expressing 30,424 mature miRNA products in 206 species. For Homo 

sapiens, more than 2,500 different mature miRNAs are currently included in this database. 

The small non-coding miRNAs are known to be involved in crucial biological processes such 

as proliferation, apoptosis, differentiation, or development [4-6]. More than 50% of all genes 

in the human genome are known to be miRNA targets and, thus, miRNAs are involved in the 

regulation of a manifold of metabolic and regulatory pathways such that now the integrative 

network analysis of miRNAs and mRNAs becomes more and more possible [7-9]. Hence, 

abnormal miRNA profiles have been associated with many human pathogenic processes as 

shown by many studies that focused on tissue-derived miRNA profiles (e.g., from patients 

with lung cancer [10], breast cancer [11], or glioblastoma [12]). Since these small nucleic 



acids excel in their high stability, they have become even more attractive as biomarker 

candidates. This also underlines the potential of miRNA biomarkers derived from peripheral 

blood for diagnostic purposes. Many groups investigated circulating miRNA profiles from 

serum for various diseases (non-ischemic systolic heart failure [13], pulmonary tuberculosis 

[14], non-small-cell lung cancer [15,16], breast cancer [17], prostate cancer [18], or ovarian 

cancer [19]), whereas we and others developed standardized operating procedures for 

measuring miRNA profiles from whole peripheral blood (myocardial infarction [20], lung 

cancer [21], multiple sclerosis [22,23], melanoma [24], ovarian cancer [25], chronic 

obstructive pulmonary disease [26], glioblastoma [27], and Alzheimer disease [28]). 

In the present meta-analysis, we analyzed a total of 848 miRNAs in 1,049 samples 

(containing the 454 samples published in our previous study [29]) measured from whole 

blood collected in PAXgene blood tubes. The investigated cohort includes healthy controls as 

well as patients diagnosed with one of 19 diseases of different International Classification of 

Diseases (ICD)-10 classes (10 cancer entities and 9 non-cancer diseases; details on the 

different cohort sizes are presented in Table 1). Our results provide a comprehensive 

overview of the human disease miRNome. By using this rich data source, we aimed at 

identifying miRNA profiles representative for a general disease state, and to identify miRNA 

signatures that are suited to discriminate different diseases from controls and from each other. 

Table 1 Cohorts with International Classification of Diseases (ICD)-10 code and cohort 

sizes 
Disease ICD-10 # Samples Institution providing RNA 

Normal – 94 Saarland University 

   DKFZ/Heidelberg University 

   Heidelberg University 

   Julius-Maximilians-University Wuerzburg 

   Zürich University 

   Christian-Albrechts-University Kiel 

Long-lived individuals – 15 Christian-Albrechts-University Kiel 

Tumor of stomach C16 13 DKFZ/Heidelberg University 

Colon cancer C18 29 Saarland University 

Lung cancer C24 73 Saarland University 

Pancreatic ductal adenocarcinoma C25 45 DKFZ/Heidelberg University 

Melanoma C43 35 Saarland University 

Ovarian cancer C56 24 Julius-Maximilians-University Wuerzburg 

Prostate cancer C61 65 Saarland University 

Wilms tumor C64 124 Saarland University 

Renal cancer C65 20 Saarland University 

Glioma C71 20 Zürich University 

Sarcoidosis D86.0 45 Albrecht Ludwigs University, Freiburg 

Multiple sclerosis G35 23 Saarland University 

Acute myocardial infarction I21.3 62 Heidelberg University 

Non-ischemic systolic heart failure I42 33 Heidelberg University 

Chronic obstructive pulmonary disease J40-47 47 Saarland University 

Peridontitis K05.4 18 Christian-Albrechts-University Kiel 

Pancreatitis K85 37 DKFZ / Heidelberg University 

Psoriasis L40 43 Saarland University 

Benign prostate hyperplasia N40 35 Saarland University 

Others – 149  



Methods 

Blood samples and groups 

The blood samples were collected and processed from nine different institutions (Table 1). 

Five centers provided samples from individuals with disease as well as controls. Blood was 

collected in PAXgene Blood RNA tubes (Becton Dickinson). All blood donors participating 

in this study gave their informed consent and local ethics committees (Ethics Commission at 

the Friedrich-Alexander University Erlangen-Nürnberg Medical School; Ethics Commission 

of the Christian-Albrechts-University Kiel; Ethics Committee at the University of Würzburg 

Medical School; Ärztekammer des Saarlandes; Ethics Committee Heidelberg University) 

approved the studies. An overview of all patients is presented in Additional file 1: Table S1. 

Selected diseases/traits have been grouped together as “others”. This includes patients with 

unclear diagnosis, e.g., patients that have either a pancreatic cancer or pancreatitis or patients 

with prostate cancer or benign prostate hyperplasia. The “others” group also contains some 

very small cohorts, e.g., 6 samples with “atopic dermatitis”. One group has been left out of 

the pairwise comparisons, namely the 15 long-lived individuals that show a substantial age 

bias since these would potentially bias either the control or disease profiles. 

miRNA extraction and microarray screening 

miRNA extraction and microarray measurement have been carried out as previously 

described [29]. The full data set has been deposited in the gene expression omnibus under 

reference GSE61741. 

Statistical analysis 

All statistical computations were carried out using the publicly available statistical language 

R [30]. For each miRNA, we report median expression in the respective groups, together with 

fold changes. Beyond this information, the variability of miRNAs is of high importance. 

Thus, we calculated measures that also depend on the variance. To assess the information 

content of single miRNAs and miRNA profiles, the area under the receiver operator 

characteristics (ROC) curve (AUC) was computed using the pROC package. The 95% 

confidence intervals for the ROC curves and AUC values were calculated using 2,000 

bootstrap samples. To determine significance values for miRNAs, two-tailed unpaired t-tests 

were calculated and the significance values adjusted for multiple testing using the Benjamini-

Hochberg approach. Validated target miRNAs by reporter assays have been extracted from 

miRTarBase [31,32]. Pathway enrichment analysis has been carried out using our tool 

GeneTrail [33,34]. Visualization has been done using CytoScape. 

Machine learning analysis 

Supervised classification of samples was carried out using linear Support Vector Machines 

(SVM) as implemented in the R e1071 package. SVMs were evaluated by applying standard 

10-fold cross-validation and a stepwise-forward filter subset selection technique. In order to 

account for variations in the random partitioning into sample subsets, cross-validation runs 

were repeated 10 times. Moreover, to test for potential overtraining, exactly the same 

procedure was carried out using randomly permuted class labels, such that 10 so-called 

permutation tests were applied for each subset size. All classifications were carried out with 



equal cohort sizes, i.e., if one group was larger than the other, samples from the first group 

were randomly selected in each repetition in order to simulate the same cohort sizes. 

qRT-PCR validation 

qRT-PCR was performed in two participating centers (center 1: Heidelberg University, center 

2: Saarland University) using the miScript PCR System (Qiagen) and the primer assays for 

hsa-miR-144* and hsa-miR-155*. We analyzed the expression of these two miRNAs in a 

total of 282 samples (center 1: 172 samples from controls, and patients with acute myocardial 

infarction, non-ischemic systolic heart failure, glioblastoma, pancreatic diseases, and breast 

cancer; center 2: 110 samples from controls, and patients with Wilms tumor, psoriasis, renal 

cancer, prostate cancer, lung cancer, multiple sclerosis, benign prostate hyperplasia, colon 

cancer, and chronic obstructive pulmonary disease). Additionally, a third cohort was 

included, providing 37 samples of a breast cancer study, a phenotype that was not included in 

the screening. As endogenous control, RNU6B was measured. To analyze qRT-PCR data we 

applied relative quantification using the 2
−ΔΔC

T method [35]. 

Results 

Identification of miRNAs generally indicating the presence of a disease 

We asked if there is a general association between the expression of certain miRNAs in 

peripheral blood and the presence of a disease. To this end, we calculated a two-tailed 

unpaired t-test of all patients versus all controls and adjusted the significance values for 

multiple testing. Furthermore, we calculated for each miRNA separately the AUC together 

with the respective 95% confidence intervals. For the comparison of diseases (cancer and 

non-cancer samples) versus healthy controls, we found 333 statistically significantly 

dysregulated miRNAs (adjusted P <0.05), of which 254 were upregulated in diseases while 

only 79 were downregulated. The most significant miRNA hsa-miR-576-5p reached an 

adjusted significance value of 4.7 × 10
−16

 (raw P =5.6 × 10
−19

). The miRNAs hsa-miR-144* 

and hsa-miR-20b were the most downregulated with an AUC of 0.751 (95% CI: 0.703–

0.799), followed by miR-17 and miR-20a. For the first two miRNAs, ROC curves are 

presented in Figure 1. In contrast, hsa-miR-720 was the most upregulated with an AUC value 

of 0.68, followed by hsa-miR-302c. All AUC and P values for this comparison are provided 

in Additional file 1: Table S2. As this table demonstrates, some miRNAs, such as miR-576-

5p, had a median expression close to the background. However, interpreting the actual 

expression values it can be seen that many patients partially demonstrate a very high 

expression of that miRNA. Here, the mean value of the samples may help to interpret the 

expression level and differences in miRNA abundance. For controls, the mean of this miRNA 

is 5.4, signifying an expression level close to the background. However, for patients, the 

mean is clearly above the background with a value of 21.4, i.e., four times higher as for 

controls. This may indicate that such generally low abundant miRNAs may have an influence 

on diseases. 

Figure 1 ROC curves for disease specific miRNAs. (A) The ROC curve for hsa-miR-144* 

is shown. (B) The ROC curves for hsa-miR-20b is shown. The blue shaded area denotes the 

95% confidence interval computed by 2,000 bootstrap samples. 



Focusing on onco-miRNAs by comparing cancer samples versus healthy controls we found 

322 miRNAs with adjusted t-test P <0.05, of which 101 were downregulated in cancer while 

221 were upregulated. The most significantly dysregulated miRNA, hsa-miR-130b*, reached 

an adjusted significance value of 1.9 × 10
−14

 (raw P =2.2 × 10
−17

). In this analysis, again hsa-

miR-144* and hsa-miR-20b showed the strongest downregulation in diseases with AUC 

values of 0.771 (95% CI of 0.721–0.821) and 0.760 (95% CI of 0.71–0.811), respectively, 

while hsa-miR-194* was the most upregulated miRNA with an AUC value of 0.687. All 

AUC and P values for this scenario are provided in Additional file 1: Table S3. 

Notably, both comparisons described above showed a high concordance, demonstrated by a 

correlation of 0.95 of the AUC values and the significant overlap presented in the Venn 

diagram (Figure 2). This result indicates that most miRNAs are not specific for cancer but for 

diseases in general. Thus, it is not surprising that the maximal AUC between all cancer and 

non-cancer diseases computed for hsa-miR-574-5p was just 0.63 and is thus substantially 

smaller than the AUCs for the comparison of diseases versus healthy control samples. 

Likewise, we found a decreased number of miRNAs significant for this comparison. 

Altogether, just 116 miRNAs reached a significance value of below 0.05 and remained 

significant after adjustment for multiple testing. Of these, 61 were downregulated in cancer 

and 55 were upregulated. All AUC and P values for this comparison are provided in 

Additional file 1: Table S4. 

Figure 2 Area-proportional Venn diagram for miRNAs with the highest AUC values in 

the comparisons of diseases versus healthy controls and cancer versus healthy controls. 
Green area shows upregulated miRNAs while red area shows downregulated miRNAs in 

cancer and diseases in general. Both comparisons show a high overlap of dysregulated 

miRNAs, the respective miRNAs are presented on the left and right of the Venn diagram. 

Disease-specificity of single miRNAs 

As described above we found many miRNAs being dysregulated in diseases in general. To 

further explore this we asked how specific miRNAs are with respect to a specific disease, 

e.g., whether they are upregulated in one group and downregulated in another group of 

diseases. First, we compared all diseases separately against controls. Of all miRNAs, seven 

(hsa-miR-380*, hsa-miR-106b, hsa-miR-17, hsa-miR-144*, hsa-miR-558, hsa-miR-548d-3p, 

and hsa-miR-222) were significantly downregulated (adjusted two-tailed t-test P <0.05) in at 

least 13 of 19 disease conditions, representing the most non-specific miRNAs. A further 6 

miRNAs were significantly downregulated in 12 pathologies, 7 miRNAs were downregulated 

in 11 pathologies, and 6 miRNAs were downregulated in 10 diseases while not being 

upregulated in any other. Conversely, three miRNAs (hsa-miR-130b*, hsa-miR-145, and hsa-

miR-658) were upregulated in 11 diseases while not being downregulated in any other. 

Additionally, 9 miRNAs (hsa-miR-484, hsa-miR-499-5p, hsa-miR-126*, hsa-miR-491-5p, 

hsa-miR-1303, hsa-miR-539, hsa-miR-25*, hsa-let-7e*, and hsa-miR-194*) were upregulated 

in 10 diseases while not downregulated in any other, as the balloon plot (Figure 3) of all 

miRNAs significant in at least 8 of 19 diseases (>40%) shows. The balloon plot size 

represents the number of miRNAs that show significant up- and respectively downregulation 

in the calculated number of diseases. The largest bubble at position (8,0) represents 22 

miRNAs that are downregulated in 8 diseases but not upregulated in a single disease. 

Altogether, 249 miRNAs are contained in the balloon plot. The respective markers can be 

found in Additional file 1: Table S5. Our results also provide strong evidence that up- and 

downregulation of miRNAs in diseases are anti-correlated, i.e., the dysregulated miRNAs are 



either up- or downregulated in diseases generally but very few miRNAs are upregulated in 

several diseases while downregulated in others. In our initial study [29], 62 miRNAs were 

found to be associated with over 40% of all tested disease conditions. Of these 62 miRNAs, 

39 were found to be still dysregulated in at least 40% of all diseases despite our substantial 

extension of the study. 

Figure 3 Up- versus downregulations. The balloon plot shows, for the different miRNAs, 

how many diseases the miRNAs are up- and respectively downregulated in. The bubble size 

represents the number of miRNAs showing this distribution in up- and downregulation. 

Orange bubbles belong to predominantly downregulated while blue bubbles belong to 

predominantly upregulated miRNAs. The two green bubbles represent 9 miRNAs that were 

equally up- and downregulated in disease. 

Importantly, we found a substantial variance in miRNA expression related to human 

pathologies. Considering single diseases, we found the highest number of 408 significantly 

dysregulated miRNAs in the case of colon cancer and melanoma. The lowest number with 

115 dysregulated miRNAs was detected for pancreatitis. For each disease, we were 

furthermore able to detect a unique signature, i.e., a combination of significant miRNAs that 

did not overlapped with any other signature, allowing for specific differentiating between 

normal controls and diseases. 

Besides the comparison between controls and diseases we also asked for specific signatures 

between diseases overall. Altogether, our study includes 20 different classes, 19 diseases as 

well as controls. Thus, a total of 190 specific signatures, one for each possible pair of the 20 

cohorts, can be calculated. We carried out all comparisons and computed the number of 

miRNAs significant in each comparison as well as the number of comparisons where a 

certain miRNA was found to be significant. Thereby, we detected an average of 256 

significant miRNAs per comparison. While some miRNAs were significant in many 

scenarios (including hsa-miR-106a (130 comparisons), hsa-miR-361-5p (130 comparisons), 

hsa-miR-17 (125 comparisons), hsa-miR-423-5p (125 comparisons), hsa-miR-320d (122 

comparisons), and hsa-miR-20a (120 comparisons)), others were significantly dysregulated in 

just a few comparisons (including hsa-miR-506 (3 comparisons), hsa-miR-202* (5 

comparisons), hsa-miR-361-3p (6 comparisons), hsa-miR-429 (7 comparisons), hsa-miR-

548a-3p (9 comparisons), or hsa-miR-518e (9 comparisons)). All disease-specific signatures 

are detailed in Additional file 1: Table S5. In particular, the miRNAs that are significant in 

many different comparisons show a substantial data variance. To further evaluate this, we 

carried out an analysis of variance (ANOVA). Even after adjustment for multiple testing all 

but 19 miRNAs (2.2%) were significant in our ANOVA. The highest significance was 

reached for hsa-miR-151-3p (P =4.03 × 10
−89

). Among the most significant miRNAs in the 

ANOVA was also hsa-miR-144*, being significant in 14 different diseases and representing 

the most generally dysregulated miRNA with a significance value of 1.88 × 10
−33

. Among the 

miRNAs with higher significance values, we found hsa-miR-155* to be significantly 

downregulated in just two diseases, namely acute myocardial infarction and glioma. 

qRT-PCR validation of microarray data 

To validate our microarray results for two important disease miRNAs, hsa-miR-144* (non-

specific) and hsa-miR-155* (specific), qRT-PCR was performed in two participating centers. 

Center 1 (Heidelberg University) analyzed a total of 172 samples from controls and patients 

with acute myocardial infarction, non-ischemic systolic heart failure, glioblastoma, and 



pancreatic diseases. Center 2 (Saarland University) analyzed a total of 110 samples from 

controls and patients with Wilms tumor, psoriasis, renal cancer, prostate cancer, lung cancer, 

multiple sclerosis, benign prostate hyperplasia, colon cancer, and chronic obstructive 

pulmonary disease samples. 

For miR-144*, we measured ΔΔCT values of −1.93 in center 1. Thus, hsa-miR-144* was 

downregulated 3.8-fold in diseases (P =1.9 × 10
−5

). In center 2, we calculated ΔΔCT values 

of −1.75; thus, concordantly hsa-miR-144* was significantly less expressed in diseases (P 

=0.0096) with a fold-change of 3.4. 

As an independent set of patients and controls, we selected a third cohort of samples, 

containing blood samples from controls and from breast cancer patients. Notably, this 

validation was independent, in that the phenotype has not been included in the initial 

microarray screening and, likewise, this center had not contributed any samples to the initial 

screening (sample details are provided in Additional file 1: Table S6). The qRT-PCR was 

performed from center 1. The ΔΔCT value was −1.79. As for the first two validation 

approaches, hsa-miR-144* was significantly less (P =0.04) expressed with a fold-change of 

3.5 in breast cancer samples compared to controls. In summary, we were able to successfully 

validate that hsa-miR-144* was significantly downregulated in various diseases in a total of 

319 samples over three approaches with consistent fold-changes of 3.8, 3.4, and 3.5, 

respectively. 

Analogously to hsa-miR-144* as a general disease marker, we also validated the miRNA hsa-

miR-155* as example of a rather specific miRNA. In our microarray experiments hsa-miR-

155* was only significantly downregulated in two diseases, namely acute myocardial 

infarction and glioma. The validation in center 1 reached a highly significant P value of 3.66 

× 10
−6

, showing a significant downregulation of this miRNA in diseases (on average 2.8-

fold). Remarkably, as mentioned above the sample cohort analyzed in this center contained 

acute myocardial infarction samples and glioma samples, as well as non-ischemic systolic 

heart failure and pancreatic diseases. However, in discordance with the screening results, we 

also found downregulation of miR-155* for pancreatic diseases. In the second validation in 

center 2, analyzing besides controls the diseases Wilms tumor, psoriasis, renal cancer, 

prostate cancer, lung cancer, multiple sclerosis, benign prostate hyperplasia, colon cancer, 

melanoma, and chronic obstructive pulmonary disease we found a slight upregulation of has-

miR-155* at a moderate fold-change of 1.7 with a non-adjusted significance value of 0.008. 

After adjusting for multiple testing, only one of the 10 tested diseases (prostate cancer) 

remained significant. For the breast cancer samples against controls we likewise did not 

detect any statistically significant difference (P =0.42), providing evidence that hsa-miR-

155* is in contrast to hsa-miR-144*, and is not a general disease marker but only significant 

in a restricted subset of diseases. 

Improvement of AUC values by combining multiple miRNAs 

As demonstrated, miRNAs have the potential to differentiate between controls and patients in 

general with high AUC values up to 0.75. By combining the predictive power of different 

miRNAs it can be expected that the diagnostic power increases. To test this hypothesis we 

employed a machine learning procedure. We applied a stepwise forward subset selection 

approach with radial basis function SVM and carried out 10 random repetition of 10-fold 

cross-validation. 



For the classification in control and disease samples we reached maximal AUC values of 

0.911, as the ROC curve in Figure 4A demonstrates. Our classifier outperformed the maximal 

AUC of the best single biomarker, i.e., hsa-miR-144* and hsa-miR-20a (AUC 0.751, 

respectively), by 16%. Altogether, we reached classification accuracy, specificity and 

sensitivity of 78%, 81%, and 75%, as the box-plot in Figure 4B details. These results are 

significantly improved as compared to random permutation tests, presented as blue boxes in 

Figure 4B (P <10
−10

). Figure 4C presents the classification example leading to the best AUC 

of 0.911, providing evidence that the majority of the samples have been classified correctly. 

Figure 4 Classification in patients (cancer and non-cancer) and controls. (A) ROC curve 

for the best classification. (B) Box-plots for accuracy, specificity, and sensitivity for the 10 

repeated cross validations in red and for 10 permutation tests in blue. (C) The best 

classification. Samples above the horizontal black line are considered as patients (denoted by 

2) and below the black line as controls (denoted by 1). 

For the comparison of cancer versus controls the highest AUC was as high as 0.94, 

representing a 16.9% improvement over the best single miRNA for this comparison (hsa-

miR-144*). Overall, a classification accuracy of 82%, a specificity of 81%, and a sensitivity 

of 83% were reached. 

Target analysis of dysregulated miRNAs 

To gain insights into the molecular function of the miRNAs, we carried out a network 

analysis. First, we extracted all targets of the 34 miRNAs that are associated with diseases in 

general. Since in silico predictions may show many false positive interactions or miss 

identifying actual miRNA-target gene relations we considered only experimentally validated 

targets. Specifically, we considered miRNA-target gene associations that have been verified 

using reporter assays. The respective 199 interactions between the miRNAs and target genes 

have been extracted from the miRTarBase. The interaction graph is presented in Figure 5, 

showing miRNAs as orange nodes and target genes as blue nodes with the node sizes 

representing the degree (i.e., the number of neighbors) of the miRNAs and target genes. Of 

high interest are genes that are targeted by different miRNAs. Especially, CDKN1A, 

VEGFA, PTEN, and E2F1 were regulated by at least five miRNAs, VEGFA and CDKN1A 

even by seven different miRNAs. A further seven genes were regulated by four miRNAs: 

TGFBR2, RB1, CCND1, APP, BCL2, ESR1, MAPK9. To understand whether the regulated 

genes have a common biological meaning we carried out a network enrichment analysis 

using GeneTrail using the KEGG database [34]. We discovered significant associations with 

various different pathologies analyzed in our study. Most prominently, 32 target genes were 

related to pathways in cancer. Although these results do not demonstrate a direct relation 

between the miRNAs and the diseases on a functional level, the results indicate a potential 

key role of the disease-affected miRNAs in human pathogenic processes. 

Figure 5 miRNA-target gene network. miRNAs are shown as orange nodes and target 

genes that have been detected by reporter assays as blue nodes. The node size corresponds to 

the degree of the respective nodes. In particular, the large blue nodes, i.e., genes that are 

regulated by many disease-related miRNAs, are of interest. 



Discussion 

For most diseases, early and specific markers are lacking. Hence, besides the continuous 

refinement of existing biomarkers, the search for novel, early disease predictors belongs to 

the current challenges in biomarker research. miRNAs offer a new class of biologically active 

molecules that contribute to many disease processes and compensatory mechanisms. 

Accordingly, they might not only offer the ability to detect a disease early, but could also 

complement existing molecular and clinical markers by providing additional information, 

supporting a biomarker-guided differential diagnosis. Furthermore, miRNA signatures could 

support a differential diagnosis in clinically overlapping diseases, such as non-ischemic 

systolic heart failure versus acute myocardial infarction. Consequently, miRNAs are 

increasingly recognized as valuable biomarkers for different pathologies. However, in most 

studies, a case–control scenario has been applied and comprehensive comparisons between 

different diseases are largely missing. 

The current meta-analysis aimed to compare the miRNA profiles from 1,049 samples 

belonging to 19 different diseases as well as controls. Here, we not only identified disease-

specific miRNAs but also miRNAs associated with the presence of a disease in general. 

Moreover, we were able to show that miRNA patterns improve the diagnostic accuracy 

substantially and provide the required specificity for diagnostic purposes. 

In the present study, we found many miRNAs that were either up- or downregulated in the 

majority of diseases compared to controls. Interestingly, among the most significant miRNAs 

downregulated in about 70% (13 of 19) of the analyzed diseases we found members of the 

miR-17 family, i.e., hsa-miR-17 and hsa-miR-106b. It is known that members of this family 

are over-expressed in cancer tissue and thus act as oncogenes by promoting cell proliferation, 

suppression of apoptosis of cancer cells, or induction of tumor angiogenesis [36]. Although 

this observation appears to be in contradiction to our data, one has to bear in mind that we 

analyzed blood but not tissue. The same holds for hsa-miR-144*, which was a key miRNA in 

our analysis and downregulated in almost all tested disease conditions. According to the 

Human MIRNA & Diseases Database (HMDD, [37,38]) several studies revealed hsa-miR-

144* (in the current V20 miRBase: hsa-miR-144-5p) as disease-associated. In our recent 

study on Alzheimer’s disease, hsa-miR-144-5p was the most significantly downregulated 

miRNA in whole blood [28]. In addition, this miRNA was downregulated in esophageal 

biopsy specimens of eosinophilic esophagitis patients [39]. In contrast, Liu et al. showed that 

hsa-miR-144* is overexpressed in peripheral blood mononuclear cells of active tuberculosis 

patients [40] and Redova et al. showed that it is also upregulated in serum of patients with 

renal cell carcinoma compared to healthy controls [41]. hsa-miR-144* was further identified 

as a new fecal-based marker for colon cancer [42] and as significantly upregulated in primary 

medulloblastoma samples compared to neural stem cells [43]. In the abovementioned studies, 

hsa-miR-144* has been described to be upregulated in diseases. While it is known that blood- 

and tissue-based regulation do not necessarily correlate [44], likewise, blood-based patterns 

and serum-based patterns for the same disease can vary substantially. There may be different 

reasons for this observation. First, we did not include infectious diseases in our study while 

Liu et al. focused on tuberculosis patients. Second, different blood collection and 

measurement systems have been applied in both studies, potentially leading to a systemic bias 

complicating a comparison between the studies. These heterogeneous results underline the 

need for a high degree of standardization of blood collection, miRNA processing protocols, 

measurement, and bioinformatics. In addition, it is certainly advised to only relate miRNA 

data that have been obtained by comparable conditions. 



Next, we would like to address the origin of the miRNAs that are generally up- or 

downregulated in diseases. In a previous study, we compared the expression of up-, down-, 

and not regulated miRNAs in CD14, CD15, CD19, CD3, and CD56 positive cells [45]. The 

miRNAs that are upregulated in diseases in the present study showed strongest expression in 

CD19 cells in our previous study. The downregulated miRNAs in diseases were 

predominantly expressed in CD14, CD15, and CD56 cells. This holds especially for hsa-miR-

144*, which was mostly expressed in CD15 cells compared to the other cell types according 

to the results of our previous study. Although the aforementioned differences between up- 

and downregulated miRNAs in general were statistically non-significant (P >0.05), the 

results indicate that the miRNAs associated with diseases are expressed at varying levels in 

different blood cell types. Remarkably, the samples in our cell separation study have been 

collected in EDTA blood tubes since PAXgene tubes lead to a cell lysis. As mentioned in the 

previous paragraph, the differences in the blood collection protocols will impact the 

comparison between disease miRNAs and miRNAs expressed in different cell types. 

The dataset used for our meta-analysis has been generated over three years and the samples 

have been collected at nine different institutions. An obvious confounding variable that also 

may limit the applicability of miRNAs in clinical routine is the storage of samples over time. 

To minimize this, we used PAXgene tubes containing RNA stabilizing agents, allowing for 

storage of samples between −20 to −70°C for up to 50 months. We additionally checked the 

storage of RNA samples over a period of up to four months at −20°C. After two months, we 

still reached correlation of 0.89, which is well in the range of the platform’s technical 

reproducibility for blood samples. Even after four months, we still reached a correlation of 

0.865 (detail in Additional file 1: Figure S1). For serum samples, we were even able to show 

the stability of miRNA expression for much longer periods of time (up to three decades) [16]. 

The highly consistent and significant results obtained in our meta-analysis thus confirm the 

robustness of the approach. 

Although these results support the idea of miRNAs as future diagnostic biomarkers, there are 

various aspects that have to be considered. While a strength of our study set-up is the parallel 

analysis of many human diseases, the cohort sizes for some of the diseases analyzed is rather 

small. Since a small cohort size may lead to an overestimation of the actual clinical 

performance for the respective disease, the identified signatures await confirmation by larger 

independent patient cohorts. Additionally, in prospective studies, one needs to investigate the 

outcome given clinical end-points associated with the different disease signatures. 

To develop diagnostic tests, it is important to consider all information about the source of the 

miRNAs. The association with diseases in general is only one factor that needs to be taken 

into account when considering miRNAs as disease-specific biomarkers. Confounding 

biological factors, such as age or gender of patients, as well as technical factors, such as 

storage conditions and processing protocols, are also essential in order to judge the value of 

miRNAs as biomarkers [46]. 

Another potential reason which may delay or even hinder the translation into clinical routine 

is the measurement system; miRNAs are relatively stable molecules and their quantification 

can be achieved by different methodologies. As such, miRNA quantification by PCR-based 

approaches shows a very high dynamic range and allows for absolute quantification, thus 

enabling testing in clinical routine. Furthermore, techniques for measuring sets of miRNAs as 

qRT-PCR are relatively inexpensive, fast, and established in most clinical laboratories, 

enabling testing in clinical routine. 



In summary, we present a substantial meta-analysis of high-throughput miRNA data from 

patients’ blood samples. Our study presents miRNAs that are dysregulated in almost all 

patients, such as miR-144*, which was also validated using qRT-PCR. However, the 

respective miRNAs do not have to be omitted as specific markers for single diseases. In 

combination with other miRNAs, these biomarkers can add substantial diagnostic 

information to disease-specific signatures. Moreover, we were able to present specific 

miRNA patterns for all diseases and for all inter-disease comparisons besides few cases such 

as the separation of pancreatitis from pancreatic cancer. Finally, we were able to report sets 

of miRNAs being dysregulated in specific diseases, further promoting the investigation of 

miRNAs from peripheral blood as clinically relevant information carriers. 

Conclusions 

In this study, we performed a meta-analysis of 1,049 miRNA profiles measured from whole 

blood samples. We discovered miRNAs that seem to be generally associated with diseases, 

most importantly miR-144*. This miRNA was validated technically and in an independent 

cohort of breast cancer patients by qRT-PCR. We provided first evidence that specific 

miRNA patterns exist for all diseases. Additionally, we report a set of miRNAs that seem to 

be rather robust in the patient’s blood. 

Our study underscores the potential of miRNA signatures for diseases. To translate respective 

biomarker sets into clinical practice, further validation studies on independent cohorts are 

however essential. Finally, it is crucial to follow strict standards in blood collection and 

measurement of miRNA profiles in order to minimize technical bias. 
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