Electronical Health Record
Data Privacy
Training Corpus
Probability Distribution
Meaningful Representation

Drug Interaction

Word Embedding

Natural Language Processing

WORDZYEC Representation

Named Entity Recognition

gensim Hidden Layer Pre-trained Models
Weight Matrix

Kullback-Leibler Divergence VVelgnt

Activation Function Attention Softmax Activation De-identification

https://files.jansellner.net/NLPSeminar.pdf

- Named entity recognition
- Sentence similarity
- Family history extraction

S1: Mental: Alert and oriented to person place time and situation.

S2: Feet: Neurological: He is alert and oriented to person, place, and time.

 \rightarrow Similarity: 4.5/5 [2]

Image vs. Text

```
img = Image.open('example_image.png').convert('L')
img.thumbnail((400, 500), Image.ANTIALIAS)
img
```


There are new streaky left basal opacities which could represent only atelectasis; however, superimposed pneumonia or aspiration cannot be excluded in the appropriate clinical setting. There is only mild vascular congestion without pulmonary edema.

Embeddings

 Idea: map each word to a fixed-size vector from an embedding space

Language *Understanding* Requires More

- Understanding the meaning of a sentence is hard
 - Words have multiple meanings
 - Word compounds may alter the meaning
 - Coreference resolution
 - ...

Coreference Resolution (cf. Winograd Schemas)

6

The coin does not fit into the backpack because it is too small.

The coin does not fit into the backpack because it is too large.

Coreference Resolution (cf. Winograd Schemas)

7

The coin does not fit into the backpack because it is too small.

The coin does not fit into the backpack because it is too large.

Coreference Resolution (cf. Winograd Schemas)

The coin does not fit into the backpack because it is too small.

→ Die Münze passt nicht mehr in den Rucksack, weil er zu klein ist.

The coin does not fit into the backpack because it is too large.

→ Die Münze passt nicht mehr in den Rucksack, weil sie zu groß ist.

2019: One Step Towards Language Understanding

- BERT: language model developed by Google
 - Word embeddings aren't unique anymore; they depend on the context instead
 - Different architecture: the system has an explicit notion to model word dependencies → attention

GLUE Benchmark (11 tasks)

Unsupervised pretraining followed by supervised finetuning

Attention (Transformer Architecture)

- Goal: model dependencies between words
- Idea: allow each word to pay attention to other words

The black cat plays with the piano

- "The" → "cat": determiner-noun relationship
- "black" → "cat": adjective-noun relationship
- "plays" → "with the piano": verb-object relationship

How is Attention Calculated?

Based on [8]

BERT Model

BERT Model

Training 16

Goal: BERT should get a basic understanding of the language

- Problem: not enough annotated training data available
- Idea: make use of the tons of unstructured data we have (Wikipedia, websites, Google Books) and define training tasks
 - Next sentence prediction
 - Masking

Attention in Action

Library [9]

Cracking Transfer Learning

1 - Semi-supervised training on large amounts of text (books, wikipedia..etc).

The model is trained on a certain task that enables it to grasp patterns in language. By the end of the training process, BERT has language-processing abilities capable of empowering many models we later need to build and train in a supervised way.

Semi-supervised Learning Step

2 - Supervised training on a specific task with a labeled dataset.

[10]

Model Size 20

Real-World Implications

https://www.blog.google/products/search/search-language-understanding-bert/

Literature 22

Papers

- Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. '<u>Attention Is All</u> You Need'. In NIPS, 2017.
- Devlin, Jacob, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
 'BERT: Pre-Training of Deep Bidirectional Transformers for Language Understanding'. ArXiv:1810.04805 [Cs], 10 October 2018.

Blogs

- https://jalammar.github.io/
- https://medium.com/synapse-dev/understanding-bert-transformer-attention-isnt-all-you-need-5839ebd396db
- https://mccormickml.com/2019/05/14/BERT-word-embeddings-tutorial/

Implementation

https://github.com/huggingface/transformers

[1] https://www.youtube.com/watch?v=2 HSKDALwuw&list=PLBmcuObd5An4UC6jvK - eSl6jCvP1gwXc

- [2] 2019 n2c2 Shared-Task and Workshop Track 1: n2c2/OHNLP Track on Clinical Semantic Textual Similarity
- [3] Lewis, Neal, Gruhl, Daniel, Yang, Hu. 'Extracting Family History Diagnosis from Clinical Texts'. In BICoB, 2011.
- [4] Johnson, Alistair E W, Pollard, Tom J, Berkowitz, Seth, Greenbaum, Nathaniel R, Lungren, Matthew P, Deng, Chih-ying, Mark, Roger G, Horng, Steven. 'MIMIC-CXR: A large publicly available database of labeled chest radiographs'. arXiv preprint arXiv:1901.07042, 2019
- [5] https://jalammar.github.io/illustrated-word2vec/
- [6] https://twitter.com/seb_ruder/status/1070470060987310081/photo/3
- [7] https://mc.ai/how-to-fine-tune-and-deploy-bert-in-a-few-and-simple-steps-to-production/
- [8] https://jalammar.github.io/illustrated-transformer/
- [9] https://github.com/jessevig/bertviz
- [10] https://jalammar.github.io/illustrated-bert/
- [11] https://medium.com/huggingface/distilbert-8cf3380435b5
- [12] https://medium.com/synapse-dev/understanding-bert-transformer-attention-isnt-all-you-need-5839ebd396db

