
1

SDMinP - Program documentation

Documentation Version: 1.1
Date: 19.04.2005

Program Version: 1.0
Date : 16.03.2005
Purpose : Adjustment of the multiple type I error (FWER)
Programmer: Markus Obreiter
Contact: m.obreiter@dkfz-heidelberg.de
Institute: German Cancer Research Center DKFZ, Heidelberg, Germany

Copyright (C) 2005 Deutsches Krebsforschungszentrum, DKFZ (German Cancer Research Center), Di-
vision of Clinical Epidemiology

This program SDMinP is free software; you can redistribute it and or modify it under the terms of the GNU
General Public License as published by the Free Software Foundation; either version 2 of the License, or
(at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTIC-
ULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along with this program; if not, write
to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA.
A copy of the GNU General Public License is attached to this documentation.

Contents

1 Abstract 4

2 Environment and Installation 4
2.1 Python . 4

2.1.1 Installation on Windows . 4
2.2 SDMinP installation . 4
2.3 Directory structure . 4

3 Program start 5

4 Input Format 6
4.1 Example Input File . 6
4.2 Data Format I . 6
4.3 Data Format II . 7

5 Data Format and unadjusted (raw) p-values 7

6 Calculation identifier 8

7 Configuration 8
7.1 Program parameters . 8
7.2 Calculation parameters . 9
7.3 Log parameters . 9
7.4 Result parameters . 9
7.5 Split File parameters . 10

8 Split Files 10

9 Log Files 10
9.1 Log the raw p value calculation . 11
9.2 Log the sorting of hypotheses . 11
9.3 Log the step down algorithm & the enforced monotonicity step 11
9.4 Log the global p-value calculation . 11

10 Result Files 11
10.1 Default result file . 11
10.2 Result file in R-format . 12
10.3 Plotting the results in R . 12

11 Step-by-Step example 13

12 FAQs 17

13 Formulas 18
13.1 Notations . 18
13.2 Empirical (permutation based) raw p value . 18

13.2.1 Approach Ge et al. - Raw p-value of the observed test statistic is provided 18

2

CONTENTS 3

13.2.2 Approach Ge et al. - Raw p-value calculation of permutation test statistics 19
13.2.3 Approach Becker - Raw p-value calculation of the observed test statistic 19
13.2.4 Approach Becker - Raw p-value calculation of permutation test statistics 19

13.3 Step down algorithm . 19
13.4 Global p-value . 19

14 References 19

15 The GNU General Public License 21

1 ABSTRACT 4

1 Abstract

Multiple testing requires the control of the multiple type I error rate. Ge et al. (2003) presented an im-
provement of the Free Step-Down Resampling Method for controlling the Family wise error rate (FWER),
originally presented by Westfall and Young (1993). They reduced the re-sampling effort considerably, what
made the method computationally feasible. Additionally, they optimized calculation steps and made the
algorithm very appealing. Becker and Knapp (2004) presented an approach, in which the re-sampling effort
is even more reduced.
SDMinP implements a variation of the algorithm of Ge et al. (2003) and Becker and Knapp (2004). It
calculates adjusted p-values and returns additionally a global p-value for testing the overall result of the
experiment. If the global p-value is significant, there is at least one significant result within the tested hy-
potheses. The program starts on top of a provided set of permutation test statistics per hypothesis. It does
not perform the permutation procedure itself to be independent of the statistical tests, used in the analysis.
See Obreiter et al. (2005) for more information about the theoretical background of the algorithms and
methods, implemented in SDMinP.

2 Environment and Installation

2.1 Python

SDMinP is implemented in python, version 2.3.5, and needs the respective python environment. SDMinP
does not use any operation system specific functions, what makes it independent from the operating system.

2.1.1 Installation on Windows

Here is a short guideline about how to install python on a windows operating system. First, download the
python installation files, version 2.3.5 or any compatible version, from www.python.org. Run the installation.
After the installation add the path to the executable python.exe file to the system or user variable ’PATH’ of
your system, e.g. ”Path = old values; C:/Python23”.

2.2 SDMinP installation

Unzip the downloaded file sdminp.zip into a destination directory of your choice. No further system specific
steps are necessary.

2.3 Directory structure

SDMinP uses a defined directory structure to operate on. It is:

- SDMinP (the home directory of SDMinP)

- src (contains the executable file and private library)

- conf (contains the configuration file with parameters)

- data (optional directory to store input data files)

- result (destination of result files)

- temp (destination of split files)

3 PROGRAM START 5

- log (destination of log files, if logging is enabled)

- doc (program documentation and GNU General Public License)

src

The src-directory contains the source files and the executable start file ’main.py’.

conf

Contains the configuration file configuration.conf, which stores the parameters.

data

Can be used to store the data input files. An example input file comes with the downloaded package, see
section 4.1.

result

Result file(s) are stored into this directory(see section 10).

temp

This directory is used to store temporary files, e.g. split files (see section 8).

log

If the logging mechanism is enabled in the configuration file, the log files are stored into the log directory.
Each calculation step creates a specific log file. For details see section 9.

doc

Stores the program documentation and the GNU General Public License.

3 Program start

The program is started via command line.

1. Call a command line console of your system (e.g.: a Windows DOS box or a Unix shell).

2. Navigate to the source directory ’src’.

3. call the program by typing ’python main.py %input file path%’. The %input file path% is the path to
the data file, which has to be processed, where python must calls the python environment of version
2.3.5 or any compatible version.

E.g., to process the example file type: ’python main.py ../data/example input.txt’

4 INPUT FORMAT 6

4 Input Format

The input for the program consists of a flat text file. Each line corresponds to one hypothesis. The data for
each hypothesis consists of the following values:

1. Hypothesis identifier: a character string without spaces

2. The unadjusted raw p-value of the hypothesis or a ’NA’ as a placeholder. If a hash is given, the raw
p-value will be calculated by the program (see sections 4.3 and 5). Note, that you have to provide
either only raw p-values or only hashes for all hypotheses. Mixing up hashes and raw p-values is not
allowed.

3. The observed test statistic.

4. Permutation test statistics, divided by spaces or tabs. The same number of permutation test statistics
has to be provided for each hypothesis.

Find here an example for one hypothesis with identifier m1, the pre-calculated raw p-value 0.01 of the
observed test statistic with value 3.00 and 9 permutation test statistics:

1) 2) 3) <---------------------- 4)----------------------->

m1 0.01 3.00 2.01 3.12 2.99 3.02 1.44 0.99 0.78 0.13 0.55

The values have to be separated by spaces or tabs.

Note

1. Floating Point Numbers have to be written with a point as a separator between full numbers and decimal
digits. E.g., ’5.123’.
2. Do not enter empty lines between hypotheses. The program includes hypotheses into the calculation set
until the first empty line is found.

4.1 Example Input File

An example input file ’example input.txt’ is added to the download package. It is located in the ’data’ folder.
It contains example data for three tightly linked markers and 10 permutation replicates, presented in Becker
and Knapp (2004). The data is provided in Format II (see below), i.e. without provided raw p-values for the
observed test statistic.

4.2 Data Format I

Data Format I denotes the format where the raw p-value per hypothesis test is provided and based on
preliminary calculations by the user (note: these raw p-values must not be calculated on basis of the
provided permutation test statistics). The following example shows 7 hypotheses with provided raw p-values
and 10 permutation test statistics. Here, the raw p-values were randomly determined as the example merely
serves for demonstrating the format:

5 DATA FORMAT AND UNADJUSTED (RAW) P-VALUES 7

m1 0.01 3.00 2.01 3.12 2.99 3.02 1.44 0.99 0.78 0.13 0.55 0.42

m2 0.04 2.12 0.01 4.12 3.12 1.02 1.12 1.11 0.12 0.11 0.02 0.10

m3 0.08 2.00 2.02 2.12 3.22 2.22 1.99 0.74 0.75 1.00 1.88 1.07

m4 0.07 4.48 1.42 5.44 1.44 1.43 1.41 1.40 4.44 1.34 0.44 1.24

m5 0.09 2.44 0.00 0.44 4.44 5.44 0.03 0.04 0.34 1.44 3.44 0.24

m6 0.08 3.03 3.01 7.33 3.02 6.33 3.00 2.99 2.87 2.84 1.33 1.04

m7 0.05 6.47 4.47 9.47 8.47 5.47 0.02 0.37 0.47 1.47 2.47 3.47

4.3 Data Format II

Data Format II denotes the format where the raw p-value is not provided. Instead, the placeholder ’NA’ has
to be set. The program will calculate it on basis of the provided permutation test statistics. In the following
example the raw p-values were omitted and have to be determined by SDMinP (see section 5).

m1 NA 3.00 2.01 3.12 2.99 3.02 1.44 0.99 0.78 0.13 0.55 0.42

m2 NA 2.12 0.01 4.12 3.12 1.02 1.12 1.11 0.12 0.11 0.02 0.10

m3 NA 2.00 2.02 2.12 3.22 2.22 1.99 0.74 0.75 1.00 1.88 1.07

m4 NA 4.48 1.42 5.44 1.44 1.43 1.41 1.40 4.44 1.34 0.44 1.24

m5 NA 2.44 0.00 0.44 4.44 5.44 0.03 0.04 0.34 1.44 3.44 0.24

m6 NA 3.03 3.01 7.33 3.02 6.33 3.00 2.99 2.87 2.84 1.33 1.04

m7 NA 6.47 4.47 9.47 8.47 5.47 0.02 0.37 0.47 1.47 2.47 3.47

NOTE

Depending on the chosen data format, the formula for calculating raw p-values for permutation test statistics
changes slightly. See section 5.

5 Data Format and unadjusted (raw) p-values

Depending on the provided data format within the input file (see section 4) the formula which calculates the
permutation raw p-values changes slightly.

Data Format I

For data sets with provided raw p-values, the approach of Ge et al. (2003) is taken. The formula for
calculating the permuation based raw p-values is described in section 13.2.2.

Data Format II

For data sets with omitted raw p-values, the approach of Becker and Knapp (2004) is taken. The raw p-
value of the observed and permutation test statistics are calculated on basis of the formulas, specified in
sections 13.2.3 and 13.2.4.

6 CALCULATION IDENTIFIER 8

6 Calculation identifier

The calculation identifier consists of date and time of the moment, when the program is started, and the
name of the input file. E.g. 2005126 18751 %Input File Name%. It is used to name log and result files.

7 Configuration

The program is configured by the configuration file ’configuration.conf’. Table 1 shows parameters and their
valid value set.

7.1 Program parameters

INTERACTIVE DIALOG

If INTERACTIVE DIALOG is set to 1 the program will ask interactively for confirmation of starting calcu-
lation and split file creation. If the parameter is set to 0, this dialog is suppressed and the questions are
automatically confirmed. This is useful for calling SDMinP automatically via a batch script.

Section Parameter Purpose Values Default
by
download

PROGRAM INTERACTIVE DIALOG switch interactive 0, 1 1
mode on and off

CALCULATION TEST CHARACTER specifies LEFT SIDED RIGHT SIDED
the test RIGHT SIDED
character TWO SIDED

” GLOBAL PVAL OPTION specifies SIMPLE SIMPLE
the formula EXTENDED

LOG RAW P CALCULATION enables logging 0, 1 0
” SORTING ” 0, 1 0
” STEP DOWN PROCEDURE ” 0, 1 0
” GLOBAL PVAL CALCULATION ” 0, 1 0
RESULT R FORMATTED generate additional 0, 1 0

result file in R format
SPLITFILES MAX LINES number of lines integer 10

per split file
(if < 1, no split files
will be used)

” REMOVE AFTER USAGE defines, whether 0, 1 1
split files stay
or will be deleted

Table 1: Configuration parameter.

7 CONFIGURATION 9

7.2 Calculation parameters

TEST CHARACTER

Specify here whether the test is left-,right- or two-sided.
For two-sided tests (the symmetric center is 0), the values of the test statistics are internally converted to
their absolute value. Then, the calculation formulas for right-sided tests are applied.

GLOBAL PVAL CALCULATION

If GLOBAL PVAL CALCULATION is set to ’SIMPLE’, the global p-value is the same as the smallest adjusted
p-value.
If GLOBAL PVAL CALCULATION is set to ’EXTENDED’, the global p-value is determined by taking the
distribution of the smallest and second smallest raw p-values into account (see section 13.4). This is
appropriate for relatively small numbers of permutation replicates (Becker and Knapp, 2004).

7.3 Log parameters

Each log parameter enables the logging for a certain processing step. Each processing step is logged into
its own log file. The file name consists of the calculation identifier and the specifier for the logged processing
step. Consider, that activating the logging slows down the program performance. It makes therefore sense
to activate it only for small test data sets to follow up the processing steps.

RAW P CALCULATION

Logs the calculation of the raw p values.

SORTING

Logs the sorting of the hypotheses, which have to be ordered by their p-value before applying the step-down
procedure. For details see section 9.

STEP DOWN PROCEDURE

Logs the step-down calculation. For details see section 9.

GLOBAL PVAL CALCULATION

Logs the global p-value calculation. For details see section 9.

7.4 Result parameters

R FORMATTED

If R FORMATTED is set to 1 an additional result file in R format is created. For details see section 10.

8 SPLIT FILES 10

7.5 Split File parameters

MAX LINES

If MAX LINES > 0: split files (see section 8) are created with a maximal number of ’MAX LINES’ lines. If
MAX LINES ≤ 0: the program works on top of the original input file. No split files are created. The number
of lines per split file influences the performance. The default value is 10.

REMOVE AFTER USAGE

Specifies, whether split files are deleted automatically before the program terminates (REMOVE AFTER USAGE
= 1) or if they stay (REMOVE AFTER USAGE = 0).

8 Split Files

In order to improve the program performance, the input data file is divided into split files. These can be
browsed faster, what improves performance of the program.
The reason for the creation of split files is that the program often has to access a specific line directly.
Instead of browsing through all preceding lines of the original input file, it can refer directly to a much
shorter split file with the contained required line. Here, the program has maximally to browse through a
defined maximum number of lines (see section 7.5).
The split files are stored in the temp-directory, which is always cleaned before new split files for a new
input file will be created. Split files can automatically be deleted directly after the calculation. This can be
controlled via the configuration file 7.5). The file extension for split files is ’.split’.
NOTE: The usage of split files requires for their storage at least the same disc space as the input data
file. Make sure, that you have enough space, when using split files. SDMinP does not check for free disc
space, but it asks in the interactive mode (see configuration) explicitly for a confirmation, before split files
are created.

9 Log Files

If you enable the logging of specific calculation steps, log files are written into the log directory. The log file
name consists of the calculation tag and the specifier for what has been logged. E.g.:

1. 2005126 16533 %Input File Name% log calcRawP.txt

2. 2005126 16533 %Input File Name% log sorting.txt

3. 2005126 16533 %Input File Name% log stepDown.txt

4. 2005126 16533 %Input File Name% log globalPval.txt

10 RESULT FILES 11

9.1 Log the raw p value calculation

The observed and permutation test statistic are shown per hypothesis test, together with their calculated
empirical raw p value. Additionally depicted are the used approach (see in section 5) and hypothesis test
character.

9.2 Log the sorting of hypotheses

Before the step-down algorithm starts, the tests have to be ordered by size of the raw p-values of the
observed test statistic. The algorithm starts with the less significant p-value, such that the hypotheses tests
are ordered descending by the raw p-value.

9.3 Log the step down algorithm & the enforced monotonicity step

Each step of the the step down algorithm is shown. Thus it is possible to follow up the changing values of
the ’q-vector’ (see Ge et al. (2003)) and the intermediate adjustment of the empirical p-value of the observed
statistic. The change of the q-vector of second smallest raw p-values is stored additionally, if the formula for
the global p-value is chosen to be ’EXTENDED’ (see section 7.2).
The ’enforcing monotonicity step’ (see Ge et al. (2003)) is attached at the end of this logging file.

9.4 Log the global p-value calculation

If the formula for the global p-value calculation was chosen to be ’SIMPLE’, the q-vector of the smallest
permutation raw p-values per permutation replicate is depicted, sorted ascending. The minimum raw p-
value of the observed test statistics is depicted, as well as the result of the global p-value.
If the calculation option was set to ’EXTENDED’, the sorted q-vector of the second smallest permutation
raw p-values per permutation replicate and the second smallest p-value of the observed test statistics are
additionally depicted.

10 Result Files

10.1 Default result file

The result file stores the calculation results for each hypothesis. Additionally the calculation parameters,
the input file and calculation time are given. E.g.:

InputFile: C:\SDMinP\data\example.txt

Number of hypotheses tests: 7

Number of perm. test statistics: 10

Start-Time: 15-50-55

End -Time: 15-50-57

TestCharacter : RIGHT_SIDED

RawP - Formula : BECKER

10 RESULT FILES 12

Global pval - Formula: SIMPLE

ID Tval RawP AdjP Global

m1 3.0 0.2 0.4 NA

m2 2.12 0.2 0.4 NA

m3 2.0 0.4 0.50 NA

m4 4.48 0.1 0.3 NA

m5 2.44 0.3 0.5 NA

m6 3.03 0.2 0.4 NA

m7 6.47 0.2 0.4 NA

Global NA NA NA 0.3

10.2 Result file in R-format

If enabled in the configuration file, an additional result file in R-format is created. This file can be imported
into the statistic program R (R Development Core Team, 2004) by applying the command ’read.table(%file-
path%)’. E.g.:

ID Tval RawP AdjP Global

1 m1 3.0 0.2 0.4 NA

2 m2 2.12 0.2 0.4 NA

3 m3 2.0 0.4 0.5 NA

4 m4 4.48 0.1 0.3 NA

5 m5 2.44 0.3 0.5 NA

6 m6 3.03 0.2 0.4 NA

7 m7 6.47 0.2 0.4 NA

8 Global NA NA NA 0.3

10.3 Plotting the results in R

The following routines plot the results in R:

read the input result

SDMinPin <- read.table("%path to R-formatted result file%")

data.frame without global values, to get rid of the NA’s

newDF <- data.frame(ID = SDMinPin$ID[1:dim(SDMinPin)[1]-1],

RawP = SDMinPin$RawP[1:dim(SDMinPin)[1]-1],

AdjP = SDMinPin$AdjP[1:dim(SDMinPin)[1]-1],

Tval = SDMinPin$Tval[1:dim(SDMinPin)[1]-1])

prepare data objects

identif <-as.character(newDF[,1])

idpl <- c(1:(dim(SDMinPin)[1]-1))

11 STEP-BY-STEP EXAMPLE 13

globalP <- SDMinPin$Global[dim(SDMinPin)[1]]

logGlobalP <- -log(globalP,10)

logRawP <- -log(newDF$RawP[1:dim(SDMinPin)[1]-1],10)

logAdjP <- -log(newDF$AdjP[1:dim(SDMinPin)[1]-1],10)

tvalues <- newDF$Tval

plot the graphics

plot 3 graphics next to each other

if you want to display only one graphic at

once, comment out the following line

op <- par(mfcol=c(1,3))

plot test statistics

plot(idpl,tvalues, type="p", bty="n",axes=F, xlab="Hypotheses",

ylab="Test statistics",

main="Test statistics")

axis(1, labels = as.character(newDF[,1]))

axis(2)

box()

plot raw p-values

plot(idpl,logRawP, xlab="Hypotheses", axes=F, ylab="-log10(p)",

main="Raw p-values")

axis(1, labels = as.character(newDF[,1]))

axis(2)

box()

plot adjusted p-values

plot(idpl,logAdjP, xlab="Hypotheses", axes=F, ylab="-log10(p)",

main="Adjusted p-values")

axis(1, labels = as.character(newDF[,1]))

axis(2)

box()

draw a red line, corresponding to the global p-value

abline(logGlobalP ,0, col = "red")

11 Step-by-Step example

This section serves as a guideline how to use SDMinP for obtaining adjusted p-values. We have three
hypotheses in the multiple testing experiment, and for each hypothesis, we have one observed test statistic
and three permutation test statistics.

11 STEP-BY-STEP EXAMPLE 14

1. Preparation of the input file

The next step is to write these values to a file, accordingly to the file format definitions in section 4.
Each line stands for one hypothesis, and contains the unique identifier, the empirical p-value or the
placeholder ’NA’, the observed test statistic and the permutation test statistics per permutation. The
placeholder for the raw p-value of the observed test statistic is set. In this example SDMinP calculates
the corresponding raw p-values.

id1 NA 1.3 1.2 1.8 9.4

id2 NA 7.3 5.6 1.0 4.5

id3 NA 5.2 10.0 2.6 9.3

We save the file under the name ’ourdata.txt’ in the directory ’C:/our data’.

Hint: if you use R and have the data in an data.frame object, you can use the R command ”write” to
store the data to a file.

my.data.frame

[,1] [,2] [,3]

[1,] "id1" "id2" "id3"

[2,] NA NA NA

[3,] "1.3" "7.3" "5.2"

[4,] "1.2" "5.6" "10"

[5,] "1.8" "1" "2.6"

[6,] "9.4" "4.5" "9.3"

write(my.data.frame, ncolumns =

dim(my.data.frame)[1], "c:/our_data/ourdata.txt")

2. Set the configuration parameters

Now, we have to prepare the configuration file, located in the conf directory and to set the calculation
parameters (see section 7).

We run the application in the interactive mode:

INTERACTIVE_DIALOG: 1

Our test statistic is right-sided, such that we have to set the test character property respectively:

TEST_CHARACTER: RIGHT_SIDED

We use the standard formula:

GLOBAL_PVAL_OPTION: SIMPLE

To visualize the calculation result with the statistic program R, we chose:

11 STEP-BY-STEP EXAMPLE 15

R_FORMATTED: 1

We disable the logging:

SORTING : 0

RAW_P_CALCULATION : 0

STEP_DOWN_PROCEDURE : 0

GLOBAL_PVAL_CALCULATION: 0

We set the maximum lines per split file to 10. Additionally we want to delete the created split files
automatically:

MAX_LINES : 10

DELETE_AFTER_USAGE : 1

3. Program call

The program must be called in the directory:

c:/programs/SDMinP/src

We call SDMinP by typing the command ’python main.py %Path to datafile%’:

C:\programs\SDMinP\src\python main.py C:/our_data/ourdata.txt

4. Interactive mode

The program mode is configured to run interactively. We confirm all questions by typing ”y”, otherwise
the program terminates.

Start calculation (type ’y’)? y

...

Split files are going to be created Max line number per split file:

10 At least 0.000 MB of free disc space are needed.

Are you sure you have enough space (type ’y’)? y

The 0.000MB is due to the very small data input file, which has less than 1KB of size.

5. Program run

The program starts after the confirmation of all questions. The main steps are prompted to the con-
sole.

6. View the result

At the end, the program displays the paths to the result files, i.e. the default and the R-formatted result
file.

11 STEP-BY-STEP EXAMPLE 16

Result(s) stored in

--> ../result\2005218_15738_ourdata.result.txt

--> ../result\2005218_15738_ourdata.result.R.txt

The result file contains the information about the input data file:

InputFile: C:\our_data\ourdata.txt

the number of hypotheses and permutation test statistics:

Number of hypotheses tests : 3

Number of perm. test statistics: 3

the calculation time:

Start-Time: 15-29-12 End -Time: 15-29-12

the test character, the formula for the raw p-value calculation and the specified formula for the global
p-value calculation:

TestCharacter : RIGHT_SIDED

RawP - Formula : BECKER

Global pval - Formula: SIMPLE

and finally the result per hypothesis, consisting of identifier, the observed test statistic, the unadjusted
raw p-value and the adjusted p-value. The last row and last column show the global p-value:

ID Tval RawP AdjP Global

id1 1.3 0.67 1.0 NA

id2 7.3 0.0 0.67 NA

id3 5.2 0.67 1.0 NA

Global NA NA NA 0.67

7. Load result into R for further processing

In the R console, we have to load the content of the R-readable result file into an R object. We do this
using the command ’my.results <- read.table(”%Path to R-readable resultfile%”)’.

my.results <- read.table(

"C:/programs/SDMinP/result/2005218_15738_ourdata.result.txt")

’my.results’ is an R-object of class ’data.frame’.

12 FAQS 17

12 FAQs

• Which platform is best running SDMinP?

SDMinP is designed to run on any python supporting platform, i.e. Windows (XP, 2000), Unix, Linux
or Macintosh. No specific platform dependent functionalities were used. We tested the program on a
Windows XP and a Unix system.

• Problems with Unix-Windows file format?

We did not have any problems with Unix or Windows file formats.

• How do I format my input files?

You can use scripting or programming languages, such as Perl, Java or Python, to create the input
file. In the step-by-step example we show how to create the input file using the statistic program R
(www.r-project.org).

• How can I visualize the results?

To visualize the results the statistic program R (www.r-project.org) can be used. SDMinP provides the
possibility to generate an R-readable result file, which can be imported into R by using the command
’my.results <- read.table(”%Path to R-readable resultfile%”)’ in the R console. See section 11.3 in the
Documentation for a routine to plot the results.

• Which version of Python supports SDMinP?

SDMinP was developed in Python 2.3.5. You can download this or newer versions from www.python.org.
Python is also a standard program in Linux and Unix environments.

• What is the difference between the formulas for the raw p-value calculation?

There are two formulas used for calculating the empirical p-value of the test statistics. One is provided
by Ge et al. (2003), which is used by SDMinP to calculate the raw p-values of the permutation test
statistics, when the raw p-value of the observed test statistic is provided in the input file (data input
format I). The other formula is provided by Becker and Knapp (2004) and is used for calculating the
raw p-value of the observed and permutation test statistics, when the data file does not contain the
raw p-value of the observed test statistic (data input format II). For more detailed information about
this subject refer to Becker and Knapp (2004).

• Is the program limited in the number of hypotheses or in the number of permutations?

The program is not limited in the number of hypotheses or the number of permutations. A limit is the
maximum size of the input file, which is determined by the operating system. All operating systems
should be able to handle files of 2GB. If you want to process larger files, see the documentation of
your system.

• Why should I use split files?

Split files make the computation faster, as they contain the content of the input data file, but split
into smaller portions. The program does not have to parse the whole original data file from top to
the respective position. The program jumps instead to the shorter split file, containing the respective
information. You can always use the advantage of split files.

13 FORMULAS 18

• Which maximum line number is the best for split files?

Generally, decreasing the split file size speeds up the program retrieval of specific hypotheses. We
recommend to set the number of maximum lines to a value between 10 and 100.

13 Formulas

13.1 Notations

These notations are used to explain the formulas in the following sections:
tm,0 : observed test statistic of hypothesis m

tm,b : permutation test statistic of hypothesis m and permutation replicate b

pm,0 : unadjusted raw p-value of the observed test statistic of hypothesis m

pm,b : raw p-value of the permutation test statistic of hypothesis m and permutation replicate b

p∗m,0 : adjusted p-value of the observed test statistic of hypothesis m

pmin
0 : smallest raw p-value of observed test statistics

pmin
b : smallest raw p-value of permutation replicate b

pmin2
0 : second smallest raw p-value of observed test statistics

pmin2
b : second smallest raw p-value of permutation replicate b

pglob : global p-value
M : number of hypotheses , m ∈ {1..M}
B: number of permutation replicates, b ∈ {1..B}
HC

0 : the complete null hypothesis, i.e. the assumption that no hypothesis will be significant
Pm: vector of permutation raw p-values for hypothesis m: [pm,1, pm,2, .., pm,B]
Pmin: vector of smallest permutation raw p-values per permutation replicate b: [pmin

1 , .., pmin
b , .., pmin

B]
Pmin2: vector of second smallest permutation raw p-values per permutation replicate b: [pmin2

1 , .., pmin2
b , .., pmin2

B]

13.2 Empirical (permutation based) raw p value

We considered two different approaches for the calculation of raw p-values. Which approach will be chosen
by the program depends on the provided data input format (see section 5). One approach is suggested by
(Ge et al., 2003), the other by (Becker and Knapp, 2004).
NOTE: the depicted formulas are designed for a right-sided test. For a left-sided test, the operator has to
be changed from to ’≥’ to ’≤’. For two-sided tests, the absolute values of the test statistics would have to
be taken, by keeping the operator ’≥’.

13.2.1 Approach Ge et al. - Raw p-value of the observed test statistic is provided

If the raw p-value of the observed test statistics are provided, i.e. Data Format I is chosen, there is no
need for SDMinP to calculate the raw p-value on basis of the provided permutation test statistics. The
reason for offering the possibility of providing a pre-calculated p-values of the observed test statistics is that
their calculation might be based on other permutation replicates than provided here for the step-down minP
adjustment.

14 REFERENCES 19

13.2.2 Approach Ge et al. - Raw p-value calculation of permutation test statistics

As basis of the calculation of the permutation raw p-values pm,i, i = 1..B, serve the permutation test
statistics tm,i of hypothesis m. The difference to the approach of Becker and Knapp (2004) is, that the
provided observed test statistic is not incorporated into the calculation.

pm,i = #{s:1≤s≤B,tm,s≥tm,i}
B

13.2.3 Approach Becker - Raw p-value calculation of the observed test statistic

If the raw p-value of the observed test statistics was not passed by the data input file (Data Format II), it is
calculated by SDMinP by using the formula:

pm,0 = #{s:1≤s≤B,tm,s≥tm,0}
B

13.2.4 Approach Becker - Raw p-value calculation of permutation test statistics

Here, the observed test statistic is included into the calculation. The permutation raw p-values pm,i, i = 1..B,
are calculated by the formula:

pm,i = #{s:0≤s≤B,s 6=i,tm,s≥tm,i}
B

13.3 Step down algorithm

Assume that pr1,0 ≤ pr2,0 ≤ .. ≤ prm,0 are the ordered raw p-values of the observed test statistics. Then,
step-down minP adjusted p-values are defined by the formula (Westfall and Young, 1993):

p∗ri,0 = maxk=1,..,i{Pr(minl=k,..,mPrl
≤ prk,0|HC

0)}

13.4 Global p-value

The smallest adjusted p-value of the individual hypotheses can be taken to test the global hypothesis:

pglob = #{s:1≤s≤B,pmin
s ≤pmin

0 }
B

If the improved formula of Becker and Knapp (2004) is used, the distribution of the second smallest per-
mutation raw p-values over all hypotheses is additionally taken into account to calculate the global p-value.
This is appropriate for relatively small numbers of permutation replicates.

pglob = #{s:1≤s≤B,pmin
s <pmin

0 or(pmin
s =pmin

0 andpmin2
s ≤pmin2

0)}
B

14 References

Becker,T.,Knapp,M. (2004) A Powerful Strategy to Account for Multiple Testing in the Context of Haplotype
Analysis, Am. J. Hum. Genet., 75, 561-570.

20

Ge,Y.,Dudoit,S.,Speed,T.P. (2003) Resampling-based Multiple Testing for Microarray Data Analysis, Test,
12, 1-77

Obreiter M., Fischer C., Chang-Claude J., Beckmann L. (2004) SDMinP: a program to control the family
wise error rate using step-down minP adjusted P-values. Bioinformatics. 2005 Jul 15;21(14):3183-4. Epub
2005 May 6

R Development Core Team (2004). R: A language and environment for statistical computing. R Foundation
for Statistical Computing, Vienna, Austria. URL http://www.R-project.org.

Westfall,P.H.,Young,S.S. (1993) Resampling-based multiple testing: examples and methods for P -value
adjustment John Wiley & Sons, New York

15 THE GNU GENERAL PUBLIC LICENSE 21

15 The GNU General Public License

Version 2, June 1991
Copyright c© 1989, 1991 Free Software Foundation, Inc.

59 Temple Place - Suite 330, Boston, MA 02111-1307, USA

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is
not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and change it. By contrast,
the GNU General Public License is intended to guarantee your freedom to share and change free software—
to make sure the software is free for all its users. This General Public License applies to most of the Free
Software Foundation’s software and to any other program whose authors commit to using it. (Some other
Free Software Foundation software is covered by the GNU Library General Public License instead.) You
can apply it to your programs, too.
When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are
designed to make sure that you have the freedom to distribute copies of free software (and charge for this
service if you wish), that you receive source code or can get it if you want it, that you can change the
software or use pieces of it in new free programs; and that you know you can do these things.
To protect your rights, we need to make restrictions that forbid anyone to deny you these rights or to ask
you to surrender the rights. These restrictions translate to certain responsibilities for you if you distribute
copies of the software, or if you modify it.
For example, if you distribute copies of such a program, whether gratis or for a fee, you must give the
recipients all the rights that you have. You must make sure that they, too, receive or can get the source
code. And you must show them these terms so they know their rights.
We protect your rights with two steps: (1) copyright the software, and (2) offer you this license which gives
you legal permission to copy, distribute and/or modify the software.
Also, for each author’s protection and ours, we want to make certain that everyone understands that there
is no warranty for this free software. If the software is modified by someone else and passed on, we want
its recipients to know that what they have is not the original, so that any problems introduced by others will
not reflect on the original authors’ reputations.
Finally, any free program is threatened constantly by software patents. We wish to avoid the danger that
redistributors of a free program will individually obtain patent licenses, in effect making the program propri-
etary. To prevent this, we have made it clear that any patent must be licensed for everyone’s free use or not
licensed at all.
The precise terms and conditions for copying, distribution and modification follow.

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND
MODIFICATION

0. This License applies to any program or other work which contains a notice placed by the copyright
holder saying it may be distributed under the terms of this General Public License. The “Program”,
below, refers to any such program or work, and a “work based on the Program” means either the
Program or any derivative work under copyright law: that is to say, a work containing the Program or

15 THE GNU GENERAL PUBLIC LICENSE 22

a portion of it, either verbatim or with modifications and/or translated into another language. (Here-
inafter, translation is included without limitation in the term “modification”.) Each licensee is addressed
as “you”.

Activities other than copying, distribution and modification are not covered by this License; they are
outside its scope. The act of running the Program is not restricted, and the output from the Program
is covered only if its contents constitute a work based on the Program (independent of having been
made by running the Program). Whether that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s source code as you receive it, in any
medium, provided that you conspicuously and appropriately publish on each copy an appropriate
copyright notice and disclaimer of warranty; keep intact all the notices that refer to this License and
to the absence of any warranty; and give any other recipients of the Program a copy of this License
along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your option offer
warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming a work based on
the Program, and copy and distribute such modifications or work under the terms of Section 1 above,
provided that you also meet all of these conditions:

(a) You must cause the modified files to carry prominent notices stating that you changed the files
and the date of any change.

(b) You must cause any work that you distribute or publish, that in whole or in part contains or is
derived from the Program or any part thereof, to be licensed as a whole at no charge to all third
parties under the terms of this License.

(c) If the modified program normally reads commands interactively when run, you must cause it,
when started running for such interactive use in the most ordinary way, to print or display an
announcement including an appropriate copyright notice and a notice that there is no warranty
(or else, saying that you provide a warranty) and that users may redistribute the program under
these conditions, and telling the user how to view a copy of this License. (Exception: if the
Program itself is interactive but does not normally print such an announcement, your work based
on the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections of that work are
not derived from the Program, and can be reasonably considered independent and separate works
in themselves, then this License, and its terms, do not apply to those sections when you distribute
them as separate works. But when you distribute the same sections as part of a whole which is a
work based on the Program, the distribution of the whole must be on the terms of this License, whose
permissions for other licensees extend to the entire whole, and thus to each and every part regardless
of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely by
you; rather, the intent is to exercise the right to control the distribution of derivative or collective works
based on the Program.

In addition, mere aggregation of another work not based on the Program with the Program (or with a
work based on the Program) on a volume of a storage or distribution medium does not bring the other
work under the scope of this License.

15 THE GNU GENERAL PUBLIC LICENSE 23

3. You may copy and distribute the Program (or a work based on it, under Section 2) in object code
or executable form under the terms of Sections 1 and 2 above provided that you also do one of the
following:

(a) Accompany it with the complete corresponding machine-readable source code, which must be
distributed under the terms of Sections 1 and 2 above on a medium customarily used for software
interchange; or,

(b) Accompany it with a written offer, valid for at least three years, to give any third party, for a
charge no more than your cost of physically performing source distribution, a complete machine-
readable copy of the corresponding source code, to be distributed under the terms of Sections 1
and 2 above on a medium customarily used for software interchange; or,

(c) Accompany it with the information you received as to the offer to distribute corresponding source
code. (This alternative is allowed only for noncommercial distribution and only if you received
the program in object code or executable form with such an offer, in accord with Subsection b
above.)

The source code for a work means the preferred form of the work for making modifications to it. For an
executable work, complete source code means all the source code for all modules it contains, plus any
associated interface definition files, plus the scripts used to control compilation and installation of the
executable. However, as a special exception, the source code distributed need not include anything
that is normally distributed (in either source or binary form) with the major components (compiler,
kernel, and so on) of the operating system on which the executable runs, unless that component itself
accompanies the executable.

If distribution of executable or object code is made by offering access to copy from a designated place,
then offering equivalent access to copy the source code from the same place counts as distribution of
the source code, even though third parties are not compelled to copy the source along with the object
code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly provided under
this License. Any attempt otherwise to copy, modify, sublicense or distribute the Program is void,
and will automatically terminate your rights under this License. However, parties who have received
copies, or rights, from you under this License will not have their licenses terminated so long as such
parties remain in full compliance.

5. You are not required to accept this License, since you have not signed it. However, nothing else
grants you permission to modify or distribute the Program or its derivative works. These actions are
prohibited by law if you do not accept this License. Therefore, by modifying or distributing the Program
(or any work based on the Program), you indicate your acceptance of this License to do so, and all its
terms and conditions for copying, distributing or modifying the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the Program), the recipient automati-
cally receives a license from the original licensor to copy, distribute or modify the Program subject to
these terms and conditions. You may not impose any further restrictions on the recipients’ exercise
of the rights granted herein. You are not responsible for enforcing compliance by third parties to this
License.

15 THE GNU GENERAL PUBLIC LICENSE 24

7. If, as a consequence of a court judgment or allegation of patent infringement or for any other reason
(not limited to patent issues), conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not excuse you from the conditions of
this License. If you cannot distribute so as to satisfy simultaneously your obligations under this License
and any other pertinent obligations, then as a consequence you may not distribute the Program at all.
For example, if a patent license would not permit royalty-free redistribution of the Program by all those
who receive copies directly or indirectly through you, then the only way you could satisfy both it and
this License would be to refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular circumstance, the
balance of the section is intended to apply and the section as a whole is intended to apply in other
circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property right claims
or to contest validity of any such claims; this section has the sole purpose of protecting the integrity of
the free software distribution system, which is implemented by public license practices. Many people
have made generous contributions to the wide range of software distributed through that system in
reliance on consistent application of that system; it is up to the author/donor to decide if he or she is
willing to distribute software through any other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the rest of
this License.

8. If the distribution and/or use of the Program is restricted in certain countries either by patents or by
copyrighted interfaces, the original copyright holder who places the Program under this License may
add an explicit geographical distribution limitation excluding those countries, so that distribution is
permitted only in or among countries not thus excluded. In such case, this License incorporates the
limitation as if written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the General Public License
from time to time. Such new versions will be similar in spirit to the present version, but may differ in
detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a version number of
this License which applies to it and “any later version”, you have the option of following the terms and
conditions either of that version or of any later version published by the Free Software Foundation.
If the Program does not specify a version number of this License, you may choose any version ever
published by the Free Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose distribution conditions
are different, write to the author to ask for permission. For software which is copyrighted by the Free
Software Foundation, write to the Free Software Foundation; we sometimes make exceptions for this.
Our decision will be guided by the two goals of preserving the free status of all derivatives of our free
software and of promoting the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR THE PRO-
GRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRIT-
ING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM “AS IS” WITHOUT

15 THE GNU GENERAL PUBLIC LICENSE 25

WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE

IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE EN-
TIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE

PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR

CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY COPY-
RIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS

PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDEN-
TAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM

(INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES

SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER

PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF

SUCH DAMAGES.

END OF TERMS AND CONDITIONS

Appendix: How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public, the best way
to achieve this is to make it free software which everyone can redistribute and change under these terms.
To do so, attach the following notices to the program. It is safest to attach them to the start of each source
file to most effectively convey the exclusion of warranty; and each file should have at least the “copyright”
line and a pointer to where the full notice is found.

one line to give the program’s name and a brief idea of what it does.
Copyright (C) yyyy name of author

This program is free software; you can redistribute it and/or modify it under the terms of the GNU
General Public License as published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program;
if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA.

Also add information on how to contact you by electronic and paper mail.
If the program is interactive, make it output a short notice like this when it starts in an interactive mode:

Gnomovision version 69, Copyright (C) yyyy name of author
Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type ‘show w’.
This is free software, and you are welcome to redistribute it under certain conditions; type ‘show
c’ for details.

15 THE GNU GENERAL PUBLIC LICENSE 26

The hypothetical commands show w and show c should show the appropriate parts of the General Public
License. Of course, the commands you use may be called something other than show w and show c ; they
could even be mouse-clicks or menu items—whatever suits your program.
You should also get your employer (if you work as a programmer) or your school, if any, to sign a “copyright
disclaimer” for the program, if necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program
‘Gnomovision’ (which makes passes at compilers) written by James Hacker.

signature of Ty Coon, 1 April 1989
Ty Coon, President of Vice

This General Public License does not permit incorporating your program into proprietary programs. If your
program is a subroutine library, you may consider it more useful to permit linking proprietary applications
with the library. If this is what you want to do, use the GNU Library General Public License instead of this
License.

