Aims of research

Research in imaging aims to early detect and biologically characterize cancer and to apply this information for individualized treatment planning, guidance as well as monitoring. Precise tumor detection and characterization including its local infiltration and distant spreading are essential for selection of the best treatment strategy as well as achieving optimized tumor control and for minimizing side effects. Comprehensive morphological, functional, metabolic and molecular cancer imaging should be addressed by improving and integrating cross sectional imaging technologies including contrast-enhanced ultrasonography (US), dual-energy/spectral computed tomography (CT), high and ultra-high field magnetic resonance imaging (MRI), as well as hybrid imaging with PET/CT and PET/MR (positron-emission-tomography). The concept of improved multiparametric and multimodal imaging aims to fully exploit all in-vivo information available for personalized 3D/4D treatment planning, guidance and monitoring including tumor morphology and motion, its micromilieu and vascular supply as well as its molecular, metabolic and functional characteristics. Imaging technologies and approaches have to be correlated to findings of histopathology and molecular oncology as well as validated in clinical studies. These complex imaging data have to be postprocessed and merged using sophisticated IT-technologies for extraction and visualization of the diagnostic and therapeutic relevant information. One major challenge is to integrate the imaging and therapeutic strategies providing improved diagnostic approaches, e.g. image-guided prostate biopsies, and more precise local therapies, e.g. MR guided HIFU (high intensity focused ultrasound of prostate cancer or imaging-guided radiotherapy with hardware integration (MR/Linac). As biomarker for therapy-response assessments imaging will furthermore have increased importance in (multicentre) clinical studies.

to top